Systematic evaluation of line probe assays for the diagnosis of tuberculosis and drug-resistant tuberculosis.

Clin Chim Acta

Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China. Electronic address:

Published: August 2022

AI Article Synopsis

  • - This study aimed to evaluate the effectiveness of line probe assays (LPAs) for diagnosing Mycobacterium tuberculosis (MTB) and drug-resistant TB, comparing their performance to traditional culture and drug susceptibility testing (DST) methods.
  • - A systematic literature review included 147 studies and nearly 182,000 samples to analyze sensitivity, specificity, and other diagnostic metrics of LPAs for various types of TB, including drug-resistant forms.
  • - The results showed high sensitivity and specificity for MTB and rifampicin-resistant TB, indicating that LPAs can be a reliable rapid diagnostic tool, while performance varied for other drug-resistant TB types, with some showing lower sensitivity.

Article Abstract

Background: Line probe assays (LPAs) are PCR-based assays used for the rapid diagnosis of Mycobacterium tuberculosis (MTB) and drug-resistant tuberculosis (DR-TB). But studies on its performance are insufficient. Thus, in this study, we conducted a systematic review and meta-analysis to evaluate the effect of LPAs in the detection of MTB and drug-resistant TB in comparison with the traditional culture and DST methods.

Methods: A systemic literature search was conducted on the Web of Science, Embase, PubMed, the Cochrane Library, Scopus, and OVID databases. All the included studies were classified according to different detecting objects. Sensitivity, specificity, Positive Likely Ratio (PLR), Negative Likely Ratio (NLR), Diagnostic Odds Ratio (DOR), corresponding 95% confidence interval, Area Under Curve (AUC), Deeks' funnel plot, and Bivariate Boxplot was used to do the evaluation.

Results: 147 studies included 491 datasets, with 182,448 samples, were incorporated into our analysis. The sensitivity (95% CI), specificity (95% CI), PLR, NLR, DOR and AUC for MTB were 0.89 (0.86 to 0.92), 0.94 (0.90 to 0.97), 15.70, 0.11, 139 and 0.96, respectively; for rifampicin-resistant TB were 0.96 (0.95 to 0.97), 0.99 (0.98 to 0.99), 82.9, 0.04, 1994 and 1.00, respectively; for isoniazid-resistant TB were 0.91 (0.89 to 0.93), 0.99 (0.98 to 0.99), 83.4, 0.09, (0.99 to 1.00), 195.7, 0.07, 2783 and 1.00, respectively; for Multi-drug resistant TB (MDR-TB) were 0.93 (0.90 to 0.95), 1.00 (0.99 to 1.00), 195.7, 0.07, 2783 and 1.00, respectively; for extensively drug-resistant TB (XDR-TB) were 0.60 (0.33 to 0.82), 1.00 (0.95 to 1.00), 291.3, 0.4, 726 and 0.95, respectively; for (second-line drug-resistant TB) SLID-TB were 0.83 (0.78 to 0.87), 0.98 (0.97 to 0.99), 44.6, 0.17, 262 and 0.98, respectively. Sensitivity in pre-extensively drug-resistant TB (Pre-XDR-TB) was 0.67, specificity was 0.91. No publication bias existed according to Deeks' funnel plot.

Conclusion: High diagnosis performance was confirmed in LPAs for the diagnosis of MTB and drug-resistant TB. LPAs might be a good alternative to culture and DST in detecting MTB, RR-TB, INH-TB, XDR-TB, SLID-TB, and MDR-TB. While more studies were still needed to explore the diagnosis performance of LPAs for Pre-XDR TB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2022.06.020DOI Listing

Publication Analysis

Top Keywords

mtb drug-resistant
12
probe assays
8
drug-resistant tuberculosis
8
culture dst
8
deeks' funnel
8
097 099
8
099 098
8
098 099
8
0
8
099 100
8

Similar Publications

Effectively responding to drug-resistant tuberculosis (TB) requires accurate and timely information on resistance levels and trends. In contexts where use of drug susceptibility testing has not been universal (i.e.

View Article and Find Full Text PDF

The great variety of antimicrobial resistance (AMR) profiles among tuberculosis (TB) patients necessitates a comprehensive detection method. This study developed culture-independent, long amplicon-based targeted next-generation sequencing (tNGS) methods for predicting AMR across 16 drugs within the complex (MTBC). Multiplex PCR amplification was employed to enrich 20 gene regions, with sequencing performed on either the Oxford Nanopore Technologies (ONT) or Illumina platforms.

View Article and Find Full Text PDF

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge due to the emergence of drug-resistant strains. This study targets Flavin-dependent thymidylate synthase (ThyX), an essential enzyme in the thymidylate biosynthesis pathway crucial for bacterial DNA replication. We utilized advanced computational techniques, including molecular dynamics (MD) simulations and interaction energy analysis, to examine the binding interactions and stability of various thiazole-thiadiazole compounds with Mtb ThyX.

View Article and Find Full Text PDF

Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), can enter a dormant phase within host tissues, complicating treatment and highlighting the need to investigate the genetic changes associated with dormancy.

Methods: This study examined clinical isolates of MTB, representing a range of susceptibility profiles and standard reference laboratory strains, i.e.

View Article and Find Full Text PDF

Adaptive Mechanisms of Mycobacterium tuberculosis: Role of fbiC Mutations in Dormancy and Survival.

Int J Mycobacteriol

October 2024

Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

This review examines the impact of F420 biosynthesis protein C (fbiC) mutations in Mycobacterium tuberculosis (Mtb) and their influence on the bacterium's dormancy mechanisms. The potential role of fbiC mutations and functional impairments in the persistence of Mtb is emphasized. Tuberculosis (TB) bacilli can enter a dormant state with minimal metabolic activity, allowing them to conserve resources and survive in low-nutrient, low-oxygen environments for extended periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!