MicroRNA-338-3p as a therapeutic target in cardiac fibrosis through FGFR2 suppression.

J Clin Lab Anal

Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China.

Published: August 2022

Background: The development of cardiac fibrosis involves the activation of cardiac fibroblasts (CFs) and their differentiation into myofibroblasts, which leads to the disruption of the extracellular matrix network. In the past few years, microRNAs (miRNA) have been described as potential targets for treating cardiac diseases. Although miR-338-3p has been shown to participate in the development of carcinoma, whether it affects cardiac fibrosis is unclear.

Methods: We examined the expression profiles of microRNAs in left ventricular samples of heart failure mice established by thoracic aortic constriction (TAC). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-338-3p. CCK-8 assay/Transwell migration assay was used to measure the proliferation rate/migration of CFs. Luciferase reporter gene assay was used to test the binding between miR-338-3p and FGFR2.

Results: This study demonstrated that miR-338-3p was significantly decreased in thoracic aortic constriction mice. Cardiac miR-338-3p amounts were also reduced in patients with dilated cardiomyopathy (DCM). Interestingly, miR-338-3p overexpression inhibited α-SMA, COL1A1, and COL3A1 expression, as well as cell proliferation and migration in CFs. Bioinformatics analysis and dual-luciferase reporter assays revealed FGFR2 was targeted by miR-338-3p, whose antifibrotic effect could be alleviated by overexpression of FGFR2. Moreover, in DCM cases, serum miR-338-3p levels were markedly elevated in individuals with worse outcomes.

Conclusions: The present study provides evidence that miR-338-3p suppresses cardiac fibroblast activation, proliferation, and migration by directly targeting FGFR2 in mice. Besides, serum miR-338-3p might constitute a potential prognostic biomarker of dilated cardiomyopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396162PMC
http://dx.doi.org/10.1002/jcla.24584DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
12
mir-338-3p
10
thoracic aortic
8
aortic constriction
8
dilated cardiomyopathy
8
proliferation migration
8
serum mir-338-3p
8
cardiac
7
microrna-338-3p therapeutic
4
therapeutic target
4

Similar Publications

Introduction: Glycerol-3-phosphate dehydrogenase 1 (GPD1) deficiency is an autosomal recessive disorder causing hypertriglyceridemia, hepatomegaly, fatty liver, and hepatic fibrosis in infancy. It is an under-recognized cause of pediatric steatotic liver disease (SLD) with only 36 cases reported worldwide.

Method: We analyzed the clinical profile of our five cases diagnosed by exome sequencing (ES) and reviewed the published cases till December 2023 using PubMed search.

View Article and Find Full Text PDF

Lung transplantation and bone health: A narrative review.

J Heart Lung Transplant

January 2025

Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. Electronic address:

Bone health after lung transplantation has not been comprehensively reviewed in over two decades. This narrative review summarizes available literature on bone health in the context of lung transplantation, including epidemiology, presentation and post-operative management. Osteoporosis is reported in approximately 30-50% of lung transplant candidates, largely due to disease-related impact on bone and lifestyle, and corticosteroid-related effects during end-stage lung disease (interstitial lung diseases, chronic obstructive pulmonary disease, and historically cystic fibrosis).

View Article and Find Full Text PDF

Injured Myocardium-Targeted Theranostic Nanoplatform for Multi-Dimensional Immune-Inflammation Regulation in Acute Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.

Pyroptosis is a key mode of programmed cell death during the early stages following acute myocardial infarction (AMI), driving immune-inflammatory responses. Cardiac resident macrophages (CRMs) are the primary mediators of cardiac immunity, and they serve a dual role through their shaping of both myocardial injury and post-AMI myocardial repair. To appropriately regulate AMI-associated inflammation, HM4oRL is herein designed, an innovative bifunctional therapeutic nanoplatform capable of inhibiting cardiomyocyte pyroptosis while reprogramming inflammatory signaling.

View Article and Find Full Text PDF

CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway.

Sleep Breath

January 2025

Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.

Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.

View Article and Find Full Text PDF

Secondhand vape exposure regulation of CFTR and immune function in cystic fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA.

Secondhand smoke exposure (SHSe) is a public health threat for people with cystic fibrosis (CF) and other lung diseases. Primary smoking reduces CFTR channel function, the causative defect in CF. We reported that SHSe worsens respiratory and nutritional outcomes in CF by disrupting immune responses and metabolic signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!