Reversible Complexation Mediated Living Radical Polymerization Using Tetraalkylammonium Chloride Catalysts.

Macromol Rapid Commun

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.

Published: November 2022

This work reports the first use of organic chloride salts as catalysts for reversible complexation mediated living radical polymerization. Owing to the strong halogen-bond forming ability of Cl , the studied four tetraalkylammonium chloride catalysts (R N Cl ) successfully control the polymerizations of methyl methacrylate, yielding polymers with low dispersities up to high monomer conversion (>90%). Benzyldodecyldimethylammonium chloride is further exploited to other methacrylates and yields low-dispersity block copolymers. The advantages of the chloride salt catalysts are wide monomer scope, good livingness, accessibility to block copolymers, and good solubility in organic media. Because of the good solubility, the use of the chloride salt catalysts can prevent agglomeration of catalysts on reactor walls in organic media, which is an industrially attractive feature. Among halide anions, chloride anion is the most abundant and least expensive halide anion, and therefore, the use of the chloride salt catalysts may lower the cost of the polymerization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202200468DOI Listing

Publication Analysis

Top Keywords

chloride salt
12
salt catalysts
12
reversible complexation
8
complexation mediated
8
mediated living
8
living radical
8
radical polymerization
8
chloride
8
tetraalkylammonium chloride
8
chloride catalysts
8

Similar Publications

While synthesizing circular polymers with telechelic polyolefin building blocks recently emerged as a promising strategy for addressing conventional polyethylenes' sustainability challenges, the lack of telechelic PP (PP) with sufficient difunctional purity for polycondensation has been limiting the development of circular polypropylenes with PP-like structures and properties. Here we described a combined approach of coordinative chain transfer polymerization and transition-metal-catalyzed quenching reaction with various acyl chlorides, affording PPs with a high difunctional ratio (up to ∼99%) and broad end functional group scope. The steric effect of polymeryl-Zn species and the role of Pd catalyst were revealed by DFT.

View Article and Find Full Text PDF

Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.

View Article and Find Full Text PDF

Modular assembly of amines and diborons with photocatalysis enabled halogen atom transfer of organohalides for C(sp)-C(sp) bond formation.

Chem Sci

January 2025

College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China

In the past few years, the direct activation of organohalides by ligated boryl radicals has emerged as a potential synthetic tool for cross-coupling reactions. In most existing methods, ligated boryl radicals are accessed from NHC-boranes or amine-boranes. In this work, we report a new photocatalytic platform by modular assembly of readily available amines and diboron esters to access a library of ligated boryl radicals for reaction screening, thus enabling the cross-coupling of organohalides and alkenes including both activated and unactivated ones for C(sp)-C(sp) bond formation by using the assembly of DABCO A1 and BNepB1.

View Article and Find Full Text PDF

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

Seventeen 3-alkylaminoquinoxaline-2(1)-thiones and 3-alkyloxyquinoxaline-2(1)-thiones were prepared by a novel thionation protocol from the readily available quinoxaline-2,3-dione in excellent overall yields. This protocol starts with the chlorination of dione using thionyl chloride to give 2,3-dichloroquinoxaline followed by the reaction with equimolar amounts of -nucleophiles (primary amines and secondary amines) or -nucleophiles (phenols and alcohols) to principally afford 2-alkanamino-3-chloroquinoxalines or 2-alkyloxy-3-chloroquinoxalines, respectively. The chloroquinoxalines reacted with the thionation reagent -cyclohexyl dithiocarbamate cyclohexyl ammonium salt in ethanol under reflux to principally give the corresponding quinoxalin-2-yl cyclohexylcarbamodithioate that finally rearranges to give the corresponding thiones in 76-93% overall yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!