In the maritime field where biofouling has both economic and environmental impacts, quantification methods of biofilm development are of outstanding importance. Indeed, it is challenging to temporally monitor biofilm formation due to the complexity of the marine ecosystem, common inaccessibility of sampling location and lack of standardized techniques. Here, an artificial polymeric surface was tested and against natural phototrophic biofilms and monoculture biofilms using plate reader fluorescence. The suitability of the developed method was verified using fluorescence microscopy coupled with image analysis - a common quantification technique - demonstrating a strong correlation between the tested methods. The results indicated the efficiency of inherent chlorophyll fluorescence in quantifying undisturbed phototrophic biofilms in field and laboratory conditions using microplate reader. This work demonstrated that the suggested approach is promising for biofilm high-throughput testing, and therefore has the potential to be used in several research and industrial sectors for monitoring phototrophic biofilm development.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2022.2094259DOI Listing

Publication Analysis

Top Keywords

phototrophic biofilms
12
biofilm development
8
high-throughput method
4
method development
4
development quantification
4
quantification aquatic
4
phototrophic
4
aquatic phototrophic
4
biofilms
4
biofilms maritime
4

Similar Publications

This research looked at how three different light intensities (1600, 4300, and 7200 lx) affect the biomass development, treatment of fuel synthesis wastewater and the recovery of valuable bioproducts between biofilm and suspended growth in a purple-bacteria enriched photobioreactor. Each condition was run in duplicate using an agricultural shade cloth as the biofilm support media in a continuously mixed batch reactor. The results showed that the highest chemical oxygen demand (COD) removal rate (56.

View Article and Find Full Text PDF

ComFB, a new widespread family of c-di-NMP receptor proteins.

bioRxiv

November 2024

Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence "Controlling Microbes to Fight Infections", Eberhard Karls University of Tübingen, 72076 Tübingen, Germany.

Cyclic dimeric GMP (c-di-GMP) is a widespread bacterial second messenger that controls a variety of cellular functions, including protein and polysaccharide secretion, motility, cell division, cell development, and biofilm formation, and contributes to the virulence of some important bacterial pathogens. While the genes for diguanylate cyclases and c-di-GMP hydrolases (active or mutated) can be easily identified in microbial genomes, the list of c-di-GMP receptor domains is quite limited, and only two of them, PliZ and MshEN, are found across multiple bacterial phyla. Recently, a new c-di-GMP receptor protein, named CdgR or ComFB, has been identified in cyanobacteria and shown to regulate their cell size and, more recently, natural competence.

View Article and Find Full Text PDF

Recent studies are showing that some lights suitable for illuminating the urban fabric (i.e. that do not include the red, green and blue sets of primary colours) may halt biological colonisation on monuments, mainly that caused by phototrophic subaerial biofilms (SABs), which may exacerbate the biodeterioration of substrates.

View Article and Find Full Text PDF

Reducing greenhouse gas emissions is critical for humanity nowadays, but it can be beneficial by developing engineered systems that valorize CO into commodities, thus mimicking nature's wisdom. Purple phototrophic bacteria (PPB) naturally accept CO into their metabolism as a primary redox sink system in photo-heterotrophy. Dedicated use of this feature for developing sustainable processes (e.

View Article and Find Full Text PDF

Thermal springs harbour microorganisms, often dominated by cyanobacteria, which form biofilms and microbial mats. These phototrophic organisms release organic exudates into their immediate surroundings, attracting heterotrophic bacteria that contribute to the diversity and functioning of these ecosystems. In this study, the microbial mats from a hydrothermal pool in the Ksar Ghilane oasis in the Grand Erg Oriental of the Desert Tunisia were collected to obtain cyanobacterial cultures formed by single cyanobacterial species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!