The fabrication of well-organised molecular assemblies on surfaces is fundamental for the creation of functional molecular systems applicable to nanoelectronic and molecular devices. In this study, we investigated the effect of substitution positions of alkyl chains on the formation of halogen-bonded molecular networks. For this purpose, building blocks with different head groups (, pyridine (Py) or tetrafluoro-iodobenzene (FI)) were substituted with hexadecyloxy chains at either the 3,4- or the 3,5-positions. The two-dimensional assembly of each compound as a single-component system was studied using scanning tunnelling microscopy (STM) at the highly oriented pyrolytic graphite (HOPG)/1-phenyloctane interface. All compounds displayed linear structures in which the alkyl chains were aligned along one of the HOPG axes. In the exceptional case of FI bearing hexadecyloxy chains at the 3,5-positions (denoted as FI-3,5), hexagonal arrays were tentatively formed owing to the triangular molecular arrangement induced by halogen bonding. A bicomponent blend of Py-3,4/FI-3,5 (1 : 1 molar ratio) enabled the formation of a honeycomb structure, whereas that of Py-3,5/FI-3,4 (1 : 1 molar ratio) produced a rectangular assembly that was periodically arranged in a zig-zag fashion. Finally, based on the observed blend ratio dependence, the formation of these different two-dimensional structures by variation in the substitution positions of the alkyl chains was discussed in terms of molecule-molecule and molecule-substrate interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp02206k | DOI Listing |
Langmuir
January 2025
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.
Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, State Key Laboratory of Biotherapy, CHINA.
Herein we report a cobalt-catalyzed hydroglycosylation of terminal alkynes, employing bench-stable ortho-iodobiphenyl (oIB) substituted sulfides as glycosyl donors. This reaction occurs with high stereo- and regioselectivity to afford E-configured vinyl α-C-glycosides, a class of compounds nontrivial to access by previous methods. The use of a bis(oxazoline) ligand with bulky side chains is critical for the high selectivities observed.
View Article and Find Full Text PDFChemMedChem
January 2025
Villanova University, Chemistry, 800 E Lancaster Ave, 19085, Villanova, UNITED STATES OF AMERICA.
Quaternary ammonium compounds (QACs) play crucial disinfectant roles in healthcare, industry, and domestic settings. Most commercially utilized QACs like benzalkonium chloride have a common architectural theme, leading to a rise in bacterial resistance and urgent need for novel structural classes. Some potent QACs such as chlorhexidine (CHX) and octenidine (OCT) feature a bolaamphiphilic architecture, comprised of two cationic centers at the molecular periphery and a non-polar region connecting them; these compounds show promise to elude bacterial resistance mechanisms.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
A series of biomass-based linear aliphatic polyesters are synthesized by combining sebacic acid (SA) (C10 diacid) and 1,18-octadecanedioic acid (OA) (C18 diacid) with a series of diols with varied alkyl chain lengths (C2 to C10 diols). SA and OA are obtainable from castor oil and palm oil, respectively. The reaction extent (polymerization extent) is high (≥96%) in all cases, and the number-average molecular weight (M) is 10 000-43 000 g mol after purification.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!