The aim of this study was to investigate the structural characteristics of biochar with different micro/nano particle sizes and its effect on the adsorption performance of Cd. Corn stalk biochar with different particle sizes (180-250 μm, 50-75 μm, and ≤ 20 μm, denoted as BC-1, BC-2, and BC-3, respectively) were prepared using the sieving and ball milling method. The structural properties of different particle sizes of biochar were analyzed via elemental analysis, laser particle size analysis, SEM, BET, FTIR, and XPS. Additionally, the adsorption mechanisms of Cd by three particle sizes of biochar under initial Cd concentrations, adsorption times, and pH conditions were comparatively studied using static adsorption experiments. The results showed that with the decrease in particle size, the pH and zeta potential of biochar were reduced; the aromaticity and polarity decreased; the specific surface area and pore volume increased; and the intensity of the characteristic peaks containing OH, C[FY=,1]C/C[FY=,1]O, and C-O groups increased. The adsorption kinetics of Cd with different particle diameters of biochar were in accordance with the pseudo-secondary kinetic model, with chemisorption dominating. The equilibrium times were in the decreasing order of BC-1 (540 min)>BC-2 (360 min)>BC-3 (80 min). The Langmuir model could better fit the adsorption isotherm process of Cd on biochar of different particle sizes (>0.97), and the maximum adsorption capacity of Cd increased with the decrease in particle size, which was expressed as BC-3 (74.43 mg·g)>BC-2 (45.71 mg·g)>BC-1 (44.59 mg·g). The main mechanisms of Cdadsorption by biochar were electrostatic attraction, surface complexation, and cation-π interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202110094 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!