Based on atmospheric precipitation collected in the northern suburbs of Nanjing from 2019 to 2020, the pH, conductivity, and chemical components of precipitation were analyzed. The seasonal variation in pH and conductivity of atmospheric precipitation in the northern suburbs of Nanjing were studied. The pollution levels and deposition characteristics of water-soluble inorganic nitrogen (WSIN) and organic nitrogen (WSON) in precipitation were also analyzed. The frequency of acid rain (pH<5.6) in atmospheric precipitation in the northern suburbs of Nanjing reached 37.18% during the observation period. Precipitation acidification was more serious in autumn and winter, and the pH value showed a variation trend of spring>summer>autumn>winter. The average conductivity of precipitation was 29.49 μS·cm; high pH and conductivity in spring were related to the high dust content in the atmosphere. The seasonal difference between WSIN and WSON in precipitation was significant. The highest and lowest concentrations of NO-N and NH-N appeared in spring and summer, respectively. The concentration of WSON was the highest in autumn (2.63 mg·L). The average concentration ratio of WSON to water-soluble total nitrogen (WSTN) in precipitation was approximately 0.47, indicating that WSON played an important role in the study of total nitrogen. The average wet deposition fluxes of WSIN and WSON were 12.10 kg·(hm·a) and 11.13 kg·(hm·a), respectively, in which the inorganic nitrogen deposition was mainly NH-N.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202111060 | DOI Listing |
ISME Commun
January 2025
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Antarctic snow harbors diverse microorganisms, including pigmented algae and bacteria, which create colored snow patches and influence global climate and biogeochemical cycles. However, the genomic diversity and metabolic potential of colored snow remain poorly understood. We conducted a genome-resolved study of microbiomes in colored snow from 13 patches (7 green and 6 red) on the Fildes Peninsula, Antarctica.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China. Electronic address:
Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.
View Article and Find Full Text PDFExtremophiles
January 2025
Division of Natural Sciences, Indiana Wesleyan University, Marion, Indiana, USA.
Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
This study explores the effects of a subcritical seawater treatment (SST) on buckwheat waste (BW), and the use of the hydrolysate as a liquid fertilizer to improve the growth of lettuce ( L.). Three temperature treatments (110 °C, 170 °C, 230 °C) were used for the SST, and the ionic composition in the seawater achieved the depolymerization and degradation of BW.
View Article and Find Full Text PDFMicroorganisms
January 2025
Institute of Vegetable, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China.
strain PJH16, isolated and tested by our team, suppresses cucumber wilt as an efficient biocontrol agent. For further investigation, the strain has been combined with two other ( VJH504 and JNF2) to enhance biocontrol ability, which formed high-efficiency microbial agents in the current study. The methodological target taken is based on achieving the optimal growth conditions of the combined microbial agents; hence, the medium composition and culture conditions were optimized through a single-factor test, orthogonal test and response surface methodology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!