The mtDNA copy number can affect the function of mitochondria and play an important role in the development of diseases. However, there are few studies on the mechanism of mtDNA copy number variation and its effects in IS. The specific mechanism of mtDNA copy number variation is still unclear. In this study, mtDNA copy number of 101 IS patients and 101 normal controls were detected by qRT-PCR, the effect of D-loop variation on mtDNA copy number of IS patients was explored. Then, a TFAM gene KD-OE PC12 cell model was constructed to explore the effect of mtDNA copy number variation on mitochondrial function. The results showed that the mtDNA copy number level of the IS group was significantly lower than that of the normal control group (p < 0.05). The relative expression of TFAM gene mRNA in the cells of the OGD/R treatment group was significantly lower than that of the control group (p < 0.05). In addition, after TFAM gene knockdown and over-expression plasmids were transfected into HEK 293T cells, mtDNA copy number and ATP production level of Sh-TFAM transfection group was significantly decreased (p < 0.05), while mtDNA copy number and ATP production level of OE-TFAM transfected group were significantly higher than that of blank control group and OE-ctrl negative control group (p < 0.01). Our study demonstrated that mitochondrial D-loop mutation and TFAM gene dysfunction can cause the decrease of mtDNA copy number, thus affecting the mitochondrial metabolism and function of nerve cells, participating in the pathological damage mechanism of IS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344826 | PMC |
http://dx.doi.org/10.1111/jcmm.17262 | DOI Listing |
Fertil Steril
January 2025
Division of Reproductive Endocrinology & Infertility, University of California, San Francisco.
Objective: To study measures of endothelial health, cardiovascular risk, and cellular aging between PCOS patients and a reproductive age normative cohort.
Design: Cross-sectional study.
Subjects: Community-based PCOS patients and a normative ovarian aging cohort as controls, aged 45 or younger at the time of evaluation.
Mitochondrial DNA B Resour
January 2025
School of Agriculture, Yunnan University, Kunming, China.
'Yunqie 9' was selected by the Horticultural Research Institute of Yunnan Academy of Agricultural Sciences based on the local environment of Yunnan Province. It is excellent in fruit quality and yield, but it is relatively weak in disease resistance. No information on complete chloroplast genome and position in the phylogeny of to restrict its genetic improvement.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.
View Article and Find Full Text PDFSci Rep
January 2025
College of Basic Medicine, Shanxi University of Chinese Medicine, No. 121 DaXue Street, Jinzhong, 030619, China.
The anti-inflammatory effect of phellodendrine (PHE), derived from Phellodendri Chinensis Cortex, has been verified in previous studies. Major depressive disorder (MDD) is associated with immune dysregulation and inflammatory processes. This study aimed to explore the therapeutic effects of PHE on MDD through network pharmacology and experimental validation.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India. Electronic address:
Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!