A Golgi-localized glycosyltransferase, OsGT14;1, is required for growth of both roots and shoots in rice.

Plant J

Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.

Published: August 2022

Glycosyltransferases (GTs) form a large family in plants and are important enzymes for the synthesis of various polysaccharides, but only a few members have been functionally characterized. Here, through mutant screening with gene mapping, we found that an Oryza sativa (rice) mutant with a short-root phenotype was caused by a frame-shift mutation of a gene (OsGT14;1) belonging to the glycosyltransferase gene family 14. Further analysis indicated that the mutant also had a brittle culm and produced lower grain yield compared with wild-type rice, but the roots showed similar root structure and function in terms of the uptake of mineral nutrients. OsGT14;1 was broadly expressed in all organs throughout the entire growth period, with a relatively high expression in the roots, stems, node I and husk. Furthermore, OsGT14;1 was expressed in all tissues of these organs. Subcellular observation revealed that OsGT14;1 encoded a Golgi-localized protein. Mutation of OsGT14;1 resulted in decreased cellulose content and increased hemicellulose, but did not alter pectin in the cell wall of roots and shoots. The knockout of OsGT14;1 did not affect the tolerance to toxic mineral elements, including Al, As, Cd and salt stress, but did increase the sensitivity to low pH. Taken together, OsGT14;1 located at the Golgi is required for growth of both roots and shoots in rice through affecting cellulose synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.15897DOI Listing

Publication Analysis

Top Keywords

roots shoots
12
osgt141
8
required growth
8
growth roots
8
shoots rice
8
roots
5
golgi-localized glycosyltransferase
4
glycosyltransferase osgt141
4
osgt141 required
4
rice
4

Similar Publications

Planting aluminum-tolerant legume green manure is a cost-effective and sustainable method to increase soil fertility as well as decrease Al toxicity in acidic soils. By analyzing the relative root elongation of seven legume green manure species, common vetch ( L.) was identified as an Al-resistant species.

View Article and Find Full Text PDF

The most common and damaging plant parasitic nematodes are root-knot nematodes (RNK). Although hemp has been clearly infected by RNK, little information is available regarding the extent of the damage and losses caused. In addition, no information is available concerning hemp seed extracts' activity against RNK.

View Article and Find Full Text PDF

The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves.

View Article and Find Full Text PDF

Optimizing In Vitro Propagation of Schönland Using Leaf, Root, and Inflorescence.

Plants (Basel)

January 2025

Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.

, a species native to South Africa, is characterized by its limited growth and scarcity, contributing to high production costs. Countries like China and Turkey are known for exporting globally. Tissue culture offers an efficient method for mass-producing unique and beautiful species such as This study tested Murashige and Skoog (MS) basal media supplemented with various concentrations of IBA (0.

View Article and Find Full Text PDF

Phosphorus Fertilization and Chemical Root Pruning: Effects on Root Traits During the Nursery Stage in Two Mediterranean Species from Central Chile.

Plants (Basel)

January 2025

Escuela de Ingeniería en Agronomía, Campus Tecnológico Local San Carlos, Tecnológico de Costa Rica, Alajuela 22321001, Costa Rica.

The role of a plant root system in resource acquisition is relevant to confront drought events caused by climate change. Accordingly, nursery practices like phosphorous (P) fertilization and root pruning have been shown to modify root architecture; however, their combined benefits require further investigation in Mediterranean species. We evaluated the effect of applied P concentrations (0, 15, 60, and 120 mg L P) with or without chemical (copper) root pruning (WCu, WoCu, respectively) in and on morpho-physiological and root architecture traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!