Heart disease has a higher fatality rate than any other disease. Increased Atrial fat on the left atrium has been discovered to cause Atrial Fibrillation (AF) in most patients. AF can put one's life at risk and eventually lead to death. AF might worsen over time; therefore, it is crucial to have an early diagnosis and treatment. To evaluate the left atrium fat tissue pattern using Radon descriptor-based machine learning. This study developed a bridge between the Radon transform framework and machine learning to distinguish two distinct patterns. Motivated by a Radon descriptor-based machine learning approach, the patches of eight patients from CT images of the heart were used and categorized into "epicardial fat tissue" and "nonfat tissue" groups. The 10 feature vectors are extracted from each big patch using Radon descriptors and then fed into a traditional machine learning model. The results show that the proposed methodology discriminates between fat tissues and nonfat tissues clearly. KNN has shown the best performance with 96.77% specificity, 98.28% sensitivity, and 97.50% accuracy. To our knowledge, this study is the first attempt to provide a Radon transform-based machine learning method to distinguish between fat tissue and nonfat tissue on the left atrium. Our proposed research method could be potentially used in advanced interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1177/09544119221110657DOI Listing

Publication Analysis

Top Keywords

machine learning
24
left atrium
16
radon descriptor-based
12
descriptor-based machine
12
fat tissue
12
tissue left
8
radon
6
machine
6
learning
6
fat
6

Similar Publications

Incidence of fall-from-height injuries and predictive factors for severity.

J Osteopath Med

January 2025

McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.

Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.

View Article and Find Full Text PDF

Liquid-Metal-Based Multichannel Strain Sensor for Sign Language Gesture Classification Using Machine Learning.

ACS Appl Mater Interfaces

January 2025

Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.

Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.

View Article and Find Full Text PDF

Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?

Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.

What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.

View Article and Find Full Text PDF

Background: Pancreatic cancer is highly aggressive and has a low survival rate primarily due to late-stage diagnosis and the lack of effective early detection methods. We introduce here a novel, noninvasive urinary extracellular vesicle miRNA-based assay for the detection of pancreatic cancer from early to late stages.

Methods: From September 2019 to July 2023, Urine samples were collected from patients with pancreatic cancer (n = 153) from five distinct sites (Hokuto Hospital, Kawasaki Medical School Hospital, National Cancer Center Hospital, Kagoshima University Hospital, and Kumagaya General Hospital) and non-cancer participants (n = 309) from two separate sites (Hokuto Hospital and Omiya City Clinic).

View Article and Find Full Text PDF

Machine learning applications in healthcare clinical practice and research.

World J Clin Cases

January 2025

Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece.

Machine learning (ML) is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis, thus creating machines that can complete tasks otherwise requiring human intelligence. Among its various applications, it has proven groundbreaking in healthcare as well, both in clinical practice and research. In this editorial, we succinctly introduce ML applications and present a study, featured in the latest issue of the .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!