B.1.1.7 lineage SARS-CoV-2 is more transmissible, leads to greater clinical severity, and results in modest reductions in antibody neutralization. Subgenomic RNA (sgRNA) is produced by discontinuous transcription of the SARS-CoV-2 genome. Applying our tool (periscope) to ARTIC Network Oxford Nanopore Technologies genomic sequencing data from 4400 SARS-CoV-2 positive clinical samples, we show that normalised sgRNA is significantly increased in B.1.1.7 (alpha) infections (n = 879). This increase is seen over the previous dominant lineage in the UK, B.1.177 (n = 943), which is independent of genomic reads, E cycle threshold and days since symptom onset at sampling. A noncanonical sgRNA which could represent ORF9b is found in 98.4% of B.1.1.7 SARS-CoV-2 infections compared with only 13.8% of other lineages, with a 16-fold increase in median sgRNA abundance. We demonstrate that ORF9b protein levels are increased 6-fold in B.1.1.7 compared to a B lineage virus in vitro. We hypothesise that increased ORF9b in B.1.1.7 is a direct consequence of a triple nucleotide mutation in nucleocapsid (28280:GAT > CAT, D3L) creating a transcription regulatory-like sequence complementary to a region 3' of the genomic leader. These findings provide a unique insight into the biology of B.1.1.7 and support monitoring of sgRNA profiles to evaluate emerging potential variants of concern.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255483 | PMC |
http://dx.doi.org/10.1038/s42003-022-03565-9 | DOI Listing |
Antimicrob Agents Chemother
December 2024
Gilead Sciences, Inc., Foster City, California, USA.
Remdesivir inhibits the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp; Nsp12). Here, we conducted viral resistance analyses from the Phase 3 PINETREE trial of remdesivir in nonhospitalized participants at risk of severe COVID-19. Nasopharyngeal swabs (collected at baseline [Day 1], Days 2, 3, 7, and 14) were eligible for analysis if their viral load was above the lower limit of quantification for the RT-qPCR assay (2228 copies/mL).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France.
The green peach aphid () is a generalist pest damaging crops and transmitting viral pathogens. Using Illumina sequencing of small (s)RNAs and poly(A)-enriched long RNAs, we analyzed aphid virome components, viral gene expression and antiviral RNA interference (RNAi) responses. Myzus persicae densovirus (family ), a single-stranded (ss)DNA virus persisting in the aphid population, produced 22 nucleotide sRNAs from both strands of the entire genome, including 5'- and 3'-inverted terminal repeats.
View Article and Find Full Text PDFJ Med Chem
December 2024
Scientific Platforms Division, Southern Research, 2000 ninth Avenue South, Birmingham, Alabama 35205, United States.
2-(Methylthio)--(4-(naphthalen-2-yl)thiazol-2-yl)nicotinamide was identified as an inhibitor against Chikungunya virus (CHIKV) with good antiviral activity [EC = 0.6 μM; EC = 0.93 μM and viral titer reduction (VTR) of 6.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX.
Viruses
October 2024
Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea.
This article reviews the literature concerning the largely forgotten tobamovirus gene products for which no functions have been ascribed. One of these gene products is the 54 kDa protein, representing the RNA-dependent RNA polymerase segment of the 183 kDa protein translated from the I-subgenomic mRNA, but which has been found only by in vitro translation and not . The other is a collection of small proteins, expressed from alternative reading frames (likely from internal ribosome entry sites) in either or both the gene or the gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!