Lasso Guided Bone Regeneration Technique for the Management of Implant Fenestration Defects.

Compend Contin Educ Dent

Chairman and Clinical Professor, Department of Periodontics, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania.

Published: July 2022

Implant placement in the anterior maxilla provides many unique challenges to the clinician, including esthetics and potential alveolar bone anatomic variations. The depth of the implant osteotomy is a key consideration to avoid a fenestration defect, which could necessitate subsequent treatment. Treatment options for such defects include bone augmentation with or without implantoplasty. Bone augmentation for the correction of dehiscence or fenestration defects on restored dental implants can be difficult due to the grafted site being close to the margin of the flap, thereby favoring premature bone graft and/or barrier membrane exposure. This article describes the management of an implant fenestration defect using lasso guided bone regeneration, a contemporary technique for bone augmentation and alveolar reconstruction designed to maximize predictability and tissue quality by combining fast-absorbing bone replacement materials with long-lasting barrier membranes and stabilization with internal periosteal sutures.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bone augmentation
12
lasso guided
8
bone
8
guided bone
8
bone regeneration
8
management implant
8
implant fenestration
8
fenestration defects
8
fenestration defect
8
regeneration technique
4

Similar Publications

Microglial phagocytosis of haematomas is crucial for neural functional recovery following intracerebral haemorrhage (ICH), a process regulated by various factors from within and outside the central nervous system (CNS). Extracellular vesicles (EVs), significant mediators of intercellular communication, have been demonstrated to play a pivotal role in the pathogenesis and progression of CNS diseases. However, the regulatory role of endogenous EVs on the phagocytic capacity of microglia post-ICH remains elusive.

View Article and Find Full Text PDF

The posterior mandible is the primary area for occlusal function. However, long-term tooth loss in the posterior mandible often leads to rapid absorption of both buccal and lingual trabecular bone plates and subsequent atrophy of the alveolar ridge. This ultimately results in horizontal bone deficiencies that complicate achieving an optimal three-dimensional placement for dental implants.

View Article and Find Full Text PDF

Two-pore channel regulators - Who is in control?

Front Physiol

January 2025

Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.

Two-pore channels (TPCs) are adenine nucleotide and phosphoinositide regulated cation channels. NAADP activates and ATP blocks TPCs, while the endolysosomal phosphoinositide PI(3,5)P activates TPCs. TPCs are ubiquitously expressed including expression in the innate as well as the adaptive immune system.

View Article and Find Full Text PDF

Wells' syndrome is a rare inflammatory disease characterized by recurrent, erythematous plaques with histological flame figures, which can be associated with idiopathic hypereosinophilic syndrome (IHES). We present a case of a nine-year-old boy who presented with a one-year history of an itchy rash on his legs associated with peripheral eosinophilia. The rash initially started as an annular plaque and developed raised borders with central hyperpigmentation.

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!