Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Graphs are widespread in many real-life practical applications. One of a graph's fundamental and popular researches is investigating the relations between two given vertices. The relationship between nodes in the graph can be measured by the shortest distance. Moreover, the number of paths is also a popular metric to assess the relationship of different nodes. In many location-based services, users make decisions on the basis of both the two metrics. To address this problem, we propose a new hybrid-metric based on the number of paths with a distance constraint for road networks, which are special graphs. Based on it, a most relevant node query on road networks is identified. To handle this problem, we first propose a Shortest-Distance Constrained DFS, which uses the shortest distance to prune unqualified nodes. To further improve query efficiency, we present Batch Query DFS algorithm, which only needs only one DFS search. Our experiments on four real-life road networks demonstrate the performance of the proposed algorithms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244333 | PMC |
http://dx.doi.org/10.1007/s00521-022-07485-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!