AI Article Synopsis

  • The SARS-CoV-2 pandemic has spurred interest in understanding coronaviruses and developing relevant reagents for research and treatment.
  • The study details the biochemical evaluation of monoclonal antibodies that were synthetically created and identified using phage-display techniques against SARS-CoV-2 proteins.
  • Binding kinetics of these antibodies were assessed using various methods, ensuring their effectiveness and reliability through comparisons with control proteins and the purified virus.

Article Abstract

SARS-CoV-2 pandemic opens up the curiosity of understanding the coronavirus. This demand for the development of the regent, which can be used for academic and therapeutic applications. The present data provide the biochemical characterization of synthetically developed monoclonal antibodies for the SARS-CoV-2 proteins. The antibodies from phage-displayed antibody libraries were selected with the SARS-CoV-2 proteins immobilized in microwell plates. The clones which bind to the antigen in Fab-phage ELISA were selected, and a two-point competitive phage ELISA was performed. Antibodies binding kinetic of IgGs for SARS-CoV2 proteins further carried with B.L.I. Systematic analysis of binding with different control proteins and purified SARS-CoV-2 ensured the robustness of the antibodies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232259PMC
http://dx.doi.org/10.1016/j.dib.2022.108415DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 proteins
12
monoclonal antibodies
8
antibodies binding
8
sars-cov-2
5
proteins
5
binding data
4
data sars-cov-2
4
proteins sars-cov-2
4
sars-cov-2 pandemic
4
pandemic opens
4

Similar Publications

Severe cases of COVID-19 are associated with immune responses that lead to a surge in inflammatory molecules, resulting in multi-organ failure and death. This significant increase in inflammatory factors is triggered by viral proteins. Open reading frame 8 (ORF8) has received particular attention as a unique accessory protein of SARS-CoV-2.

View Article and Find Full Text PDF

Objectives: We assessed the transmission of SARS-CoV-2 and vaccine receipt in a representative sample of wet market workers in a highly dense, low-income setting. Wet markets are key in many Asian settings, including Dhaka, Bangladesh, for fresh food, including animal protein.

Methods: During early 2022, we assessed the prevalence of anti-SARS-CoV-2 antibodies in a random sample of poultry and vegetable workers in 15 wet markets, and investigated associations with socio-demographic characteristics and COVID-19 vaccination.

View Article and Find Full Text PDF

NRF2 Antioxidant Response and Interferon-Stimulated Genes Are Differentially Expressed in SARS-CoV-2-Positive Young Subjects.

Immun Inflamm Dis

January 2025

Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.

Background: Several respiratory viruses, including Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), suppress nuclear factor-E2-related factor-2 (NRF2) antioxidant response, generating oxidative stress conditions to its advantage. NRF2 has also been reported to regulate the innate immune response through the inhibition of the interferon (IFN) pathway. However, its modulation in younger individuals and its correlation with the IFN response remain to be elucidated.

View Article and Find Full Text PDF

Multiplex digital nucleic acid analysis (NAA) allows the precise quantification of multiple target nucleic acids with single-molecule sensitivity, making it highly appealing for life science research and clinical diagnostics. Nucleic acid-guided endonucleases, such as CRISPR, have demonstrated great potential in digital NAA. However, performing multiplex digital NAA with an endonuclease remains challenging.

View Article and Find Full Text PDF

Serum amyloid A (SAA) is a key biomarker for diagnosing inflammatory responses in diseases like influenza and COVID-19. An electrochemiluminescence (ECL) biosensor has been constructed for signal enhancement in SAA detection by encapsulating 4,4',4″,4‴-(1,3,6,8-pyrenetetrayl) tetrakis-benzoic acid (TBAPy) into liposomes. Such biomimetic encapsulation shields the biologically important membrane to avoid aggregation of TBAPy and prevents quenching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!