A virus called severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2) is the causing organism of coronavirus disease 2019 (COVID-19), which has severely affected human life and threatened public health. The pandemic took millions of lives worldwide and caused serious negative effects on human society and the economy. SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) are interesting targets due to their crucial role in viral replication and growth. Since there is only one approved therapy for COVID-19, drug repurposing is a promising approach to finding molecules with potential activity against COVID-19 in a short time and at minimal cost. In this study, virtual screening was performed on the ChEMBL library containing 9923 FDA-approved drugs, using various docking filters with different accuracy. The best drugs with the highest docking scores were further examined for molecular dynamics (MD) studies and MM-GBSA calculations. The results of this study suggest that nadide, cangrelor and denufosol are promising potential candidates against COVID-19. Further in vitro, preclinical and clinical studies of these candidates would help to discover safe and effective anti-COVID-19 drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243907 | PMC |
http://dx.doi.org/10.1007/s11224-022-01999-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!