The performance, mechanisms, and effects of various coexisting ions on phosphorus (P) adsorptive capture in biogas slurry using MgO-doped biochar (MBC) were investigated. The results revealed that in comparison to the pristine biochar, the introduction of MgO significantly improved the P adsorptive capture feasibility of MBC. In addition, the process of P capture by MBC was not affected by the initial pH of the solution. The process of P capture could reach equilibrium within 120 min and be simulated using both the pseudo-first-order and the pseudo-second-order kinetic models. In addition, the highest P capture capacity calculated from the Langmuir isotherm model was approximately 129.35 mg/g. The coexisting of cations including NH, Ca, Cu, Cd, Pb, Zn, and Cr in higher concentrations of promoted P adsorptive capture through precipitation and ionic atmosphere effects. The presence of coexisting ions including SO, HCO, and fulvic acid (FA) had a certain inhibitory effect on the P adsorptive capture through competitive adsorption with phosphate. The existence of monovalent ions such as K, Na, Cl, and NO had no significant effect on P adsorptive capture. The adsorptive capture of P by MBC was affected by various processes including electrostatic attraction and surface complexation, and the presence of different coexisting substances had different impacts on the P adsorption. Adding to these, the P in the biogas slurry was completely adsorbed by the MBC during the experiment, indicating that MBC is a promising composite in the engineering application for the capture of P from wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-21625-9 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemistry, University of Delhi-110007, New Delhi, India.
Wastewater contamination by organic dyes, especially Rhodamine B (RhB), possess a significant environmental challenge. This study explores a novel bio sorbent for the removal of RhB dye from contaminated water, using chitosan trisodium citrate-modified magnetic nanoparticles (Fe₃O₄@CSTSC@PANI) coated with polyaniline. The nanocomposite was characterized by FT-IR, XRD, HRTEM, SEM, BET surface analysis.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.
The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
November 2024
Food Science Department, Agriculture College, Basrah University, 61001 Basrah, Iraq.
Background: Flavonoids are among the most important compounds found in plants, since laboratory studies have shown them to be a daily requirement in human diets due to their various health benefits. Therefore, this study focused on extracting, purifying, and measuring the antioxidant activity of the flavonoid quercetin, which is widely found in plants and possesses a variety of biological activities, from different plant sources.
Methods: The extraction of quercetin was performed using several methods (chemical, physical, and enzymatic) and several extraction solutions (water, ethanol, and chloroform) from several plants (spinach, dill, Onion Skin, , sumac, digalkhasab chemri, and leelwi chemri).
JACS Au
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.
Understanding the origin and effect of the confinement of molecules and transition states within the micropores of a zeolite can enable targeted design of such materials for catalysis, gas storage, and membrane-based separations. Linear correlations of the thermodynamic parameters of molecular adsorption in zeolites have been proposed; however, their generalizability across diverse molecular classes and zeolite structures has not been established. Here, using molecular simulations of >3500 combinations of adsorbates and zeolites, we show that linear trends hold in many cases; however, they collapse for highly confined systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!