Strain-Dependent Diffusivity of Small and Large Molecules in Meniscus.

J Biomech Eng

Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146; Department of Orthopaedic Surgery, University of Miami, Miami, FL 33136; Max Biedermann Institute for Biomechanics at Mount, Sinai Medical Center, Miami Beach, FL 33140.

Published: November 2022

Due to lack of full vascularization, the meniscus relies on diffusion through the extracellular matrix to deliver small (e.g., nutrients) and large (e.g., proteins) to resident cells. Under normal physiological conditions, the meniscus undergoes up to 20% compressive strains. While previous studies characterized solute diffusivity in the uncompressed meniscus, to date, little is known about the diffusive transport under physiological strain levels. This information is crucial to fully understand the pathophysiology of the meniscus. The objective of this study was to investigate strain-dependent diffusive properties of the meniscus fibrocartilage. Tissue samples were harvested from the central portion of porcine medial menisci and tested via fluorescence recovery after photobleaching to measure diffusivity of fluorescein (332 Da) and 40 K Da dextran (D40K) under 0%, 10%, and 20% compressive strain. Specifically, average diffusion coefficient and anisotropic ratio, defined as the ratio of the diffusion coefficient in the direction of the tissue collagen fibers to that orthogonal, were determined. For all the experimental conditions investigated, fluorescein diffusivity was statistically faster than that of D40K. Also, for both molecules, diffusion coefficients significantly decreased, up to ∼45%, as the strain increased. In contrast, the anisotropic ratios of both molecules were similar and not affected by the strain applied to the tissue. This suggests that compressive strains used in this study did not alter the diffusive pathways in the meniscus. Our findings provide new knowledge on the transport properties of the meniscus fibrocartilage that can be leveraged to further understand tissue pathophysiology and approaches to tissue restoration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309715PMC
http://dx.doi.org/10.1115/1.4054931DOI Listing

Publication Analysis

Top Keywords

meniscus
8
20% compressive
8
compressive strains
8
properties meniscus
8
meniscus fibrocartilage
8
diffusion coefficient
8
tissue
5
strain-dependent diffusivity
4
diffusivity small
4
small large
4

Similar Publications

Interfacial Dripping Faucet: Generating Monodisperse Liquid Lenses.

Phys Rev Lett

December 2024

Carlos III University of Madrid, Thermal and Fluids Engineering Department, Avenida de la Universidad, 30 (Sabatini building), 28911 Leganés (Madrid), Spain.

We present a surface analog to a dripping faucet, where a viscous liquid slides down an immiscible meniscus. Periodic pinch-off of the dripping filament is observed, generating a succession of monodisperse floating lenses. We show that this interfacial dripping faucet can be described analogously to its single-phase counterpart, replacing surface tension by the spreading coefficient, and even undergoes a transition to a jetting regime.

View Article and Find Full Text PDF

Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve.

View Article and Find Full Text PDF

Medial Meniscus Ramp Tears: State of the Art.

J ISAKOS

December 2024

Twin Cities Orthopedics, Edina, Minnesota, USA. Electronic address:

Medial meniscus ramp tears are tears of the posteromedial capsule or peripheral rim of the posteromedial meniscus that frequently occur with anterior cruciate ligament (ACL) tears. The incidence and prevalence of medial meniscus ramp tears has been increasing in the recent literature due to the increased understanding of the anatomy and diagnosis of these tears. When a patient presents with an ACL tear, a medial meniscus ramp tear should be suspected if the patient has a grade 3+ Lachman or pivot shift exam, a vertical line of increased signal intensity in the posterior capsule or peripheral meniscus on magnetic resonance imagining (MRI), or posteromedial tibial plateau bone bruising on MRI.

View Article and Find Full Text PDF

Unlabelled: Meniscal extrusion (ME), defined as the radial displacement of the meniscal body outside the margins of the tibial plateau, has been seen as an independent and relevant predictor of intra-articular knee degeneration. Nonetheless, available classifications for ME are exclusively quantitative assessments not considering the context in which extrusion is identified. Indeed, ME can be the result of several different conditions spanning from acute tears to chronic degeneration and its definition cannot be only dependent on the numeric calculation of the radial displacement of the meniscal body.

View Article and Find Full Text PDF

Background: Meniscal allograft transplantation (MAT) is indicated in the setting of anterior cruciate ligament (ACL) reconstruction to restore proper arthrokinematics and load distribution for the meniscus-deficient knee. Objective outcomes after ACL reconstruction with concomitant MAT in athletic populations are scarcely reported and highly variable.

Purpose: To compare patient outcomes using an objective functional performance battery, self-reported outcome measures, and return-to-sport rates between individuals undergoing ACL reconstruction with concomitant MAT and a matched group undergoing isolated ACL reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!