Transition-metal chalcogenides (TMCs) with tunable direct bandgaps and interlayer spacing are attractive for energy-related applications. Semiconducting zinc chalcogenides, especially their selenides (ZnSe) and tellurides (ZnTe), with enhanced conductivity, high theoretical capacity, low operation voltage and abundance, have appeared on the horizon and receive increasing interest in terms of electrochemical energy storage and conversion. Despite the existing typical obstruction owing to the large volume change, relatively low electrical conductivity and sluggish ion diffusion kinetics into the bulk phase, several effective strategies such as compositing, doping, nanostructuring, and electrode/cell design have exhibited promising applications. We herein provide a timely and systematic overview of recent research and significant advances regarding ZnSe, ZnTe and their hybrids/composites, covering synthesis to electrode design and to applications, especially in advanced Li/Na/K-ion batteries, as well as the reaction mechanisms thereof. It is hoped that the overview will shed new light on the development of ZnSe and ZnTe for next-generation rechargeable batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr02366k | DOI Listing |
Sci Rep
December 2024
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
Phys Chem Chem Phys
October 2024
School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China.
Recently, the search for materials with high photoelectric conversion efficiency has emerged as a significant research hotspot. Unlike p-n junctions, the bulk photovoltaic effect (BPVE) can also materialize within pure crystals. Here, we propose wurtzite and zinc blende semiconductors without inversion symmetry (AgI, GaAs, CdSe, CdTe, SiGe, ZnSe, and ZnTe) as candidates for achieving the BPVE and investigate the factors that affect the shift current.
View Article and Find Full Text PDFChemSusChem
December 2024
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
Nano Lett
May 2024
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
ZnTe colloidal semiconductor nanocrystals (NCs) have shown promise for light-emitting diodes (LEDs) and displays, because they are free from toxic heavy metals (Cd). However, so far, their low photoluminescence (PL) efficiency (∼30%) has hindered their applications. Herein, we devised a novel structure of ZnTe NCs with the configuration of ZnSe (core)/ZnTe (spherical quantum well, SQW)/ZnSe (shell).
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
College of New Energy and Materials, China University of Petroleum, Beijing 102249, PR China.
The CuGaTe thermoelectric material has garnered widespread attention as an inexpensive and nontoxic material for mid-temperature thermoelectric applications. However, its development has been hindered by its low intrinsic carrier concentration and high thermal conductivity. This study investigates the band structure and thermoelectric properties of (CuGaTe) (ZnSe) ( = 0, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!