A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Suppressing singlet-triplet annihilation processes to achieve highly efficient deep-blue AIE-based OLEDs. | LitMetric

Suppressing singlet-triplet annihilation processes to achieve highly efficient deep-blue AIE-based OLEDs.

Mater Horiz

Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.

Published: August 2022

Aggregation-induced emission (AIE) materials are attractive for the fabrication of high efficiency organic light-emitting diodes (OLEDs) by harnessing "hot excitons" from the high-lying triplet exciton states (T, ≥ 2) and high photoluminescence (PL) quantum efficiency in solid films. However, the electroluminescence (EL) efficiency of most AIE-based OLEDs does not meet our expectation due to some unrevealed exciton loss processes. Herein, we further enhance the efficiency of blue AIE-based OLEDs, and find experimentally and theoretically that the serious exciton loss is caused by the quenching of radiative singlet excitons and long-lived triplet excitons [singlet-triplet annihilation (STA)]. In order to suppress the STA process, 1-(2,5-dimethyl-4-(1-pyrenyl)phenyl)pyrene (DMPPP) with triplet-triplet annihilation up-conversion was doped in two AIE emitters to reduce the triplet excitons on the lowest triplet excited state (T) of AIE molecules. It can be seen that the external quantum efficiency (EQE) of the resulting blue OLEDs was enhanced to 11.8% with CIE coordinates of (0.15, 0.07) and a negligible efficiency roll-off, realizing the efficiency breakthrough of deep-blue AIE-based OLEDs. This work establishes a physical insight in revealing the exciton loss processes and the fabrication of high-performance AIE-based OLEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2mh00627hDOI Listing

Publication Analysis

Top Keywords

aie-based oleds
20
exciton loss
12
deep-blue aie-based
8
quantum efficiency
8
loss processes
8
triplet excitons
8
oleds
7
efficiency
7
aie-based
5
suppressing singlet-triplet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!