Self-supervised learning has shown great promise because of its ability to train deep learning (DL) magnetic resonance imaging (MRI) reconstruction methods without fully sampled data. Current self-supervised learning methods for physics-guided reconstruction networks split acquired undersampled data into two disjoint sets, where one is used for data consistency (DC) in the unrolled network, while the other is used to define the training loss. In this study, we propose an improved self-supervised learning strategy that more efficiently uses the acquired data to train a physics-guided reconstruction network without a database of fully sampled data. The proposed multi-mask self-supervised learning via data undersampling (SSDU) applies a holdout masking operation on the acquired measurements to split them into multiple pairs of disjoint sets for each training sample, while using one of these pairs for DC units and the other for defining loss, thereby more efficiently using the undersampled data. Multi-mask SSDU is applied on fully sampled 3D knee and prospectively undersampled 3D brain MRI datasets, for various acceleration rates and patterns, and compared with the parallel imaging method, CG-SENSE, and single-mask SSDU DL-MRI, as well as supervised DL-MRI when fully sampled data are available. The results on knee MRI show that the proposed multi-mask SSDU outperforms SSDU and performs as well as supervised DL-MRI. A clinical reader study further ranks the multi-mask SSDU higher than supervised DL-MRI in terms of signal-to-noise ratio and aliasing artifacts. Results on brain MRI show that multi-mask SSDU achieves better reconstruction quality compared with SSDU. The reader study demonstrates that multi-mask SSDU at R = 8 significantly improves reconstruction compared with single-mask SSDU at R = 8, as well as CG-SENSE at R = 2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669191 | PMC |
http://dx.doi.org/10.1002/nbm.4798 | DOI Listing |
Sensors (Basel)
December 2024
CeMOS Research and Transfer Center, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea.
In this study, we propose a novel framework for time-series representation learning that integrates a learnable masking-augmentation strategy into a contrastive learning framework. Time-series data pose challenges due to their temporal dependencies and feature-extraction complexities. To address these challenges, we introduce a masking-based reconstruction approach within a contrastive learning context, aiming to enhance the model's ability to learn discriminative temporal features.
View Article and Find Full Text PDFLife (Basel)
November 2024
Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea.
Cervical cancer is a significant health challenge, yet it can be effectively prevented through early detection. Cytology-based screening is critical for identifying cancerous and precancerous lesions; however, the process is labor-intensive and reliant on trained experts to scan through hundreds of thousands of mostly normal cells. To address these challenges, we propose a novel distribution-augmented approach using contrastive self-supervised learning for detecting abnormal squamous cervical cells from cytological images.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada.
Most existing methods for magnetic resonance imaging (MRI) reconstruction with deep learning use fully supervised training, which assumes that a fully sampled dataset with a high signal-to-noise ratio (SNR) is available for training. In many circumstances, however, such a dataset is highly impractical or even technically infeasible to acquire. Recently, a number of self-supervised methods for MRI reconstruction have been proposed, which use sub-sampled data only.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK.
Cardiovascular diseases (CVDs) are the most common health threats worldwide. 2D X-ray invasive coronary angiography (ICA) remains the most widely adopted imaging modality for CVD assessment during real-time cardiac interventions. However, it is often difficult for the cardiologists to interpret the 3D geometry of coronary vessels based on 2D planes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!