An ultra-thin and highly sensitive SARS-CoV-2 detection platform was demonstrated using a nano-porous anodic aluminum oxide (AAO) membrane. The membrane surface was functionalized to enable efficient trapping and identification of SARS-CoV-2 genomic targets through DNA-DNA and DNA-RNA hybridization. To immobilize the probe oligonucleotides on the AAO membrane, the pore surface was first coated with the linking reagents, 3-aminopropyltrimethoxysilane (APTMS) and glutaraldehyde (GA), by a compact vacuum infiltration module. After that, complementary target oligos with fluorescent modifier was pulled and infiltrated into the nano-fluidic channels formed by the AAO pores. The fluorescent signal applying the AAO membrane sensors was two orders stronger than a flat glass template. In addition, the dependence between the nano-pore size and the fluorescent intensity was evaluated. The optimized pore diameter d is 200 nm, which can accommodate the assembled oligonucleotide and aminosilane layers without blocking the AAO nano-fluidic channels. Our DNA functionalized membrane sensor is an accurate and high throughput platform supporting rapid virus tests, which is critical for population-wide diagnostic applications result in a page being rejected by search engines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769019 | PMC |
http://dx.doi.org/10.1109/JSEN.2021.3109022 | DOI Listing |
Water Res
December 2024
Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea; NanoRaman Analysis Corp., 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. Electronic address:
Nanoplastics (NPs) are growing concerns for health and the environment, being widely distributed across marine, freshwater, air, and biological systems. Analyzing NPs in real environmental samples requires pretreatment, which has traditionally been complex and often leads to underestimation in actual samples, creating a gap between real-world conditions and research findings. In this study, we propose using anodic aluminum oxide (AAO) membrane as a direct Raman substrate for particles on a filter, achieving complete recovery during separation and concentration while simplifying the pretreatment stages.
View Article and Find Full Text PDFTalanta
December 2024
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
Nanopore/nanochannel sensing is a promising analytical method in the fields of chemistry and biology. However, due to the interference of non-analytes in complex samples, directly analyzing un-pretreated samples through nanopores/nanochannels remains a great challenge. Here, we report a type of heterogeneous membrane by covering anodic aluminum oxide (AAO) cylindrical nanochannel porous membrane with graphene oxide/calcium alginate (GCA) hybrid hydrogel to reduce the interference of protein on the current detection signal.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, Zhanjiang 524091, China.
Mango (), a nutritionally rich tropical fruit, is significantly impacted by UV-B radiation, which induces oxidative stress and disrupts physiological processes. This study aimed to investigate mango pulp's molecular and biochemical responses to UV-B stress (96 kJ/mol) from the unripe to mature stages over three consecutive years, with samples collected at 10-day intervals. UV-B stress affected both non-enzymatic parameters, such as maturity index, reactive oxygen species (ROS) levels, membrane permeability, and key enzymatic components of the ascorbate-glutathione (AsA-GSH) cycle.
View Article and Find Full Text PDFSci Total Environ
December 2024
Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Reactor, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.
Nano Lett
October 2024
School of Microelectronics, Nanjing University of Science and Technology, Nanjing 210094, China.
Reproducing neural functions with artificial nanofluidic systems has long been an aspirational goal for neuromorphic computing. In this study, neural functions, such as neural activation and synaptic plasticity, are successfully accomplished with a polarity-switchable nanofluidic memristor (PSNM), which is based on the anodized aluminum oxide (AAO) nanochannel array. The PSNM has unipolar memristive behavior at high electrolyte concentrations and bipolar memristive behavior at low electrolyte concentrations, which can emulate neural activation and synaptic plasticity, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!