Influence of oil-related product toluene and herbal remedy puncturevine Tribulus terrestris L. (TT) on female reproduction is known. Yet, mechanisms of their action on ovaries in different species and potential protective effect of TT against adverse toluene action remain to be established. We studied the effect of toluene, TT, and their combination on ovarian granulosa cells from two mammalian species (cows and horses). Viability, markers of proliferation (PCNA) and apoptosis (bax), steroid hormones, IGF-I, oxytocin, and prostaglandin F (PGF) release were analyzed by trypan blue exclusion test, quantitative immunocytochemistry, and EIA/ELISA. Toluene suppressed all analyzed parameters. In both species, TT stimulated proliferation and reduced progesterone, oxytocin, and PGF. In horses, TT inhibited testosterone and IGF-I. In both species, TT supported toluene effect on viability, steroids, IGF-I, and PGF, and inverted its action on apoptosis. In cows, TT promoted toluene effect on proliferation. In horses, TT supported toluene effect on oxytocin but suppressed its influence on proliferation. In both species, toluene induced inhibitory action of TT on viability, steroids, IGF-I, and PGF, and prevented its stimulatory action on proliferation. In cows, toluene supported inhibitory action of TT on oxytocin and prevented its stimulatory action on apoptosis. In horses, toluene induced stimulatory effect of TT on apoptosis. Our results indicate potential toxic toluene effect on farm animal ovaries, applicability of TT as a biostimulator of farm animal reproduction and as a protector against the adverse influence of toluene on female reproduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/rda.14204 | DOI Listing |
Org Biomol Chem
January 2025
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.
View Article and Find Full Text PDFWater Res
December 2024
Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:
This study proposes a switching operating mode that alternates between microbial fuel cell (MFC) and microbial electrolysis cell (MEC) to restore the biofilm activity and organic pollutant degradation capacity in bioelectrochemical systems (BESs) during prolonged operation. After the model switching, the toluene degradation kinetics in BESs equipped with graphite sheet (GS) and polyaniline@carbon nanotubes (PANI@CNTs) bioanodes were elevated by 2.10 and 3.
View Article and Find Full Text PDFNat Prod Res
January 2025
BRIC-Institute of Bioresources and Sustainable Development (Department of Biotechnology, Government of India), Imphal, India.
Capsaicin is the primary bioactive constituent in chillies, responsible for its incomparable pungent taste and many health advantages. In the current study, 32 samples of three different species of ( L., s L.
View Article and Find Full Text PDFTalanta
January 2025
Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China; School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou, 510070, PR China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
Macrocyclic polymer materials exhibit excellent selectivity and adsorption performance in pollutant adsorption due to unique host-guest recognition. Herein, three kinds of calixarene polymers (C4P, C6P and C8P) were synthesized through Sonogashira reaction, and were characterized through H NMR, FT-IR, SEM, and TEM. The water contact angle experiments revealed that three kinds of calixarene polymers were highly hydrophobic, and they all exhibited high enrichment efficiency for weak polar chloro-substituted benzene compounds (chlorobenzene, o-chlorotoluene, p-dichlorobenzene and o-dichlorobenzene) and BTEX (benzene, toluene, ethylbenzene and xylenes).
View Article and Find Full Text PDFTalanta
January 2025
Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044, China. Electronic address:
The effective qualitative and quantitative detection of mixed components of volatile organic compounds (VOCs) with similar molecular structures has always been a challenge and hotpoint in the research. A novel quartz-crystal microbalance (QCM) nanocomposite sensor integrated with a surface-enhanced Raman scattering (SERS) detection platform for multi-component gas analysis was proposed and fabricated in this paper. MIL-100 (Fe)/PAN composite fibers were developed on QCM via electrospinning of polyacrylonitrile (PAN) and hydrothermal synthesis, addressing the integration issues of MIL-100 particles in devices while maintaining high specific surface area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!