Cylindrical Al Nano-Dimer Induced Polarization in Deep UV Region.

Nanoscale Res Lett

Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.

Published: July 2022

The polarization properties of asymmetric plasmonic nanostructures originating from optical anisotropy show great application prospects in many fields, such as display, sensing, filtering, and detection. Here, we report the realization of polarization control in the deep ultraviolet (UV) region using Al nano-dimer structures. The simulation results indicated that the polarization effect was generated by the modulation of inter-coupling between the quadrupole plasmon resonances of the asymmetric dimer. By further optimizing the size and gap of the dimer, the extinction in the 200-nm deep UV region obtained a polarization ratio of 18%. This research is helpful for understanding the resonance hybridization of high-order surface plasmons in UV region and is of great significance to the emerging polarized micro-nano photonics fields, such as spin optoelectronics and deep UV optoelectronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256893PMC
http://dx.doi.org/10.1186/s11671-022-03702-7DOI Listing

Publication Analysis

Top Keywords

deep region
8
region polarization
8
polarization
5
cylindrical nano-dimer
4
nano-dimer induced
4
induced polarization
4
deep
4
polarization deep
4
region
4
polarization properties
4

Similar Publications

Traumatic injury remains a leading cause of death worldwide, with traumatic bleeding being one of its most critical and fatal consequences. The use of whole-body computed tomography (WBCT) in trauma management has rapidly expanded. However, interpreting WBCT images within the limited time available before treatment is particularly challenging for acute care physicians.

View Article and Find Full Text PDF

In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records.

View Article and Find Full Text PDF

Ribosomal RNA is the main component of the ribosome, which is essential for protein synthesis. The diploid human genome contains several hundred copies of the rDNA transcription unit (TU). Droplet digital PCR and deep bisulfite sequencing were used to determine the absolute copy number (CN) and the methylation status of individual rDNA TU in blood samples of healthy individuals.

View Article and Find Full Text PDF

Introduction: While cerebral amyloid angiopathy is likely responsible for intracerebral hemorrhage (ICH) occurring in superficial (grey matter, vermis) cerebellar locations, it is unclear whether hypertensive arteriopathy (HA), the other major cerebral small vessel disease (cSVD), is associated with cerebellar ICH (cICH) in deep (white matter, deep nuclei, cerebellar peduncle) regions. We tested the hypothesis that HA-associated neuroimaging markers are significantly associated with deep cICH compared to superficial cICH.

Patients And Methods: Brain MRI scans from consecutive non-traumatic cICH patients admitted to a referral center were analyzed for cSVD markers.

View Article and Find Full Text PDF

Digital fluorescence immunoassay (DFI) based on random dispersion magnetic beads (MBs) is one of the powerful methods for ultrasensitive determination of protein biomarkers. However, in the DFI, improving the limit of detection (LOD) is challenging since the ratio of signal-to-background and the speed of manual counting beads are low. Herein, we developed a deep-learning network (ATTBeadNet) by utilizing a new hybrid attention mechanism within a UNet3+ framework for accurately and fast counting the MBs and proposed a DFI using CdS quantum dots (QDs) with narrow peak and optical stability as reported at first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!