Electron probe microanalysis (EPMA) is promising for accurately determining elemental components in micro-areas of individual phytolith particles, interpreting compositional features and formation mechanisms of phytoliths in plants, identifying archeological and sedimental phytolith. However, the EPMA method of analyzing mounted slide phytoliths has not well been defined. In this study, we attempted different EPMA methods to determine the elemental compositions of phytoliths in mounted slides. Direct analysis of carbon (DAC) with other elements in phytolith could obtain abnormally high total values and carbon values. The method of carbon excluded in measuring elements (non-carbon analysis (NCA)) was feasible to obtain elemental compositions in phytolith. The NCA method was conducive to obtain the factual elemental compositions of an individual phytolith (morphotype) when the carbon content of phytolith was relatively low. The EPMA results of phytoliths from 20 bamboo species (three genera) showed that phytolith was dominantly composed of SiO2 but also included low contents of diverse other elements. The EPMA of phytoliths can provide the elemental composition of micro-areas of an individual phytolith particle. The elemental compositions of phytolith varied with their morphotypes, the genera and ecotype of bamboos. The EPMA of elemental compositions in phytoliths is a potential tool to study the formation mechanism of phytoliths, plant taxonomical identification, archaeological and paleoenvironmental reconstruction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255755PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270842PLOS

Publication Analysis

Top Keywords

elemental compositions
20
individual phytolith
12
phytolith
9
electron probe
8
probe microanalysis
8
elemental
8
elemental composition
8
phytoliths
8
bamboo species
8
micro-areas individual
8

Similar Publications

Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.

View Article and Find Full Text PDF

In this study, we attempt to illustrate fossil vertebrate dental tissue geochemistry and, by inference, its extent of diagenetic alteration, using quantitative, semi-quantitative and optical tools to evaluate bioapatite preservation. We present visual comparisons of elemental compositions in fish and plesiosaur dental remains ranging in age from Silurian to Cretaceous, based on a combination of micro-scale optical cathodoluminescence (CL) observations (optical images and scanning electron microscope) with minor, trace and rare earth element (REE) compositions (EDS, maps and REE profiles), as a tool for assessing diagenetic processes and biomineral preservation during fossilization of vertebrate dental apatite. Tissue-selective REE values have been obtained using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), indicating areas of potential REE enrichment, combined with cathodoluminescence (CL) analysis.

View Article and Find Full Text PDF

Boraginaceae plants, including four endemic species from Türkiye, were analyzed for organic and inorganic compositions using ICP-MS and LC-MS/MS to explore their nutritional, medicinal, and ecological significance. This study examined 18 species, identifying key elements such as sodium (87,600.359-118,049.

View Article and Find Full Text PDF

Engineering the Ratios of Nanoparticles Dispersed in Triphasic Nanocomposites for Biomedical Applications.

ACS Appl Mater Interfaces

January 2025

Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.

Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.

View Article and Find Full Text PDF

The current work outlines the preparation of a TiO nanotube (NT) layer electrochemically formed on the surface of a clinically-relevant titanium alloy anodisation. This NT layer was subsequently modified alternating current electrodeposition to incorporate copper micro- and nanoparticles on top of and within the NTs. Physical characterisation of the NT layer and the copper-incorporated NTs was carried out through analysis of the surface morphology, elemental composition, crystallinity, and stability SEM, EDX, XRD, and ICP-OES, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!