Natural clay (NC) was employed as a natural adsorbent for the elimination of an azo dye Crystal Violet (CV) from aqueous media. The characterization of the clay was performed by X-ray diffractometry (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with an X-ray energy dispersion spectrometer (EDS) and Brunauer-Emmett-Teller (BET) specific surface area analysis. The Box-Behnken design (BBD) was used as a powerful tool to determine the stationary points of the main independent factors: initial CV concentration, initial pH, temperature, and adsorbent dose on the adsorption efficiency. The significance and adequacy of the model were investigated using analysis of variance (ANOVA). The obtained results indicated an optimal dye removal of 99.1% at pH = 3, initial CV concentration of 11.767 mg/L, adsorbent load of 3.075 g/L, and T = 298.0 K. The kinetic study was evaluated using three models: a pseudo-first-order (PFO), a pseudo-second-order (PSO), and an intraparticle diffusion model. The observed kinetics is in excellent agreement with the PSO kinetic model. Therefore, both isotherms Langmuir and Freundlich fitted well the adsorption equilibrium data. The thermodynamic study revealed that the main parameters including (ΔG°, ΔH°, and ΔS°) indicated that the adsorption of CV onto NC was an endothermic and spontaneous process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135516DOI Listing

Publication Analysis

Top Keywords

azo dye
8
dye crystal
8
crystal violet
8
natural clay
8
initial concentration
8
removal industrial
4
industrial azo
4
violet natural
4
clay characterization
4
characterization kinetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!