Objective: To determine the long-term cardiovascular disease risk of astronauts with spaceflight exposure compared with a well-matched cohort.

Methods: National Aeronautics and Space Administration (NASA) astronauts are selected into their profession based upon education, unique skills, and health and are exposed to cardiovascular disease risk factors during spaceflight. The Cooper Center Longitudinal Study (CCLS) is a generally healthy cohort from a preventive medicine clinic in Dallas, Texas. Using a matched cohort design, astronauts who were selected beginning April 1, 1959, (and each subsequent selection class through 2009) and exposed to spaceflight were matched to CCLS participants who met astronaut selection criteria; 1514 CCLS participants matched to 303 astronauts in a 5-to-1 ratio on sex, date of birth, and age. The outcome of cardiovascular mortality through December 31, 2016, was determined by death certificate or National Death Index.

Results: There were 11 deaths caused by cardiovascular disease (CVD) among astronauts and 46 among CCLS participants. There was no evidence of increased mortality risk in astronauts (hazard ratio [HR]=1.10; 95% confidence interval [CI], 0.50 to 2.45) with adjustment for baseline cardiovascular covariates. However, the secondary outcome of CVD events showed an increased adjusted risk in astronauts (HR=2.41; 95% CI, 1.26 to 4.63).

Conclusion: No increased risk of CVD mortality was observed in astronauts with spaceflight exposure compared with a well-matched cohort, but there was evidence of increased total CVD events. Given that the duration of spaceflight will increase, particularly on missions to Mars, continued surveillance and mitigation of CVD risk is needed to ensure the safety of those who venture into space.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mayocp.2022.04.003DOI Listing

Publication Analysis

Top Keywords

risk astronauts
16
cardiovascular disease
12
ccls participants
12
astronauts
10
long-term cardiovascular
8
healthy cohort
8
cooper center
8
center longitudinal
8
longitudinal study
8
disease risk
8

Similar Publications

Background: Space exploration has become a major interest for scientific and medical research. With increasing duration and frequency of manned space missions, it is crucial to understand the impact of microgravity on the cardiovascular health of astronauts. We focus on this relationship by reviewing literature that explores how microgravity affects several hemodynamic parameters and cardiovascular biomarkers.

View Article and Find Full Text PDF

Mechanisms and Countermeasures for Muscle Atrophy in Microgravity.

Cells

December 2024

Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Previous studies have revealed that muscle atrophy emerges as a significant challenge faced by astronauts during prolonged missions in space. A loss in muscle mass results in a weakening of skeletal muscle strength and function, which will not only contribute to a decline in overall physical performance but also elevate the risk of various age-related diseases. Skeletal muscle atrophy in the microgravity environment is thought to be associated with changes in energy metabolism, protein metabolism, calcium ion homeostasis, myostatin levels, and apoptosis.

View Article and Find Full Text PDF

Space exploration and risk of Parkinson's disease: a perspective review.

NPJ Microgravity

January 2025

Department of Biological Science, Boise State University, Boise, ID, 83725, USA.

Systemic mitochondrial dysfunction, dopamine loss, sustained structural changes in the basal ganglia including reduced tyrosine hydroxylase, and altered gait- these effects observed in space-flown animals and astronauts mirrors Parkinson's disease (PD). Evidence of mitochondrial changes in space-flown human cells, examined through the lens of PD, suggests that spaceflight-induced PD-like molecular changes are important to monitor during deep space exploration. These changes, may potentially elevate the risk of PD in astronauts.

View Article and Find Full Text PDF

Incidence, mortality, and global burden of retinoblastoma in 204 countries worldwide from 1990 to 2021: Data and systematic analysis from the Global Burden of Disease Study 2021.

Neoplasia

December 2024

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China. Electronic address:

Background: Retinoblastoma (Rb), the primary intraocular malignancy in children, poses significant risks, yet its overall burden remains inadequately assessed. This study aims to analyze global Rb trends using Global Burden of Disease, Injuries, and Risk Factors study (GBD) 2021 data.

Methods: GBD 2021 data was analyzed to assess Rb incidence, mortality, and disability-adjusted life years (DALYs) from 1990 to 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!