The corticospinal tract (CST), which plays a major role in the control of voluntary limb movements, arises from multiple motor- and somatosensory-related areas in monkeys. Although the cortical origin and quantitative differences in CSTs among the cortical areas are well-documented in monkeys, they are unclear in humans. We quantitatively investigated the CSTs from the cerebral cortex to the cervical cord in healthy volunteers using fiber tractography of diffusion-weighted magnetic resonance imaging. The corticospinal (CS) streamlines arose from nine cortical areas: primary motor area (mean ± SD = 49.71 ± 1.61%), dorsal (16.33 ± 1.37%) and ventral (11.02 ± 0.90%) premotor cortex, supplementary motor area (5.14 ± 0.36%), pre-supplementary motor area (2.46 ± 0.26%), primary somatosensory cortex (11.06 ± 0.91%), Brodmann area 5 (0.88 ± 0.09%), caudal cingulate zone (1.70 ± 0.30%), and posterior part of the rostral cingulate zone (1.70 ± 0.34%). In all cortical areas, the number of CS streamlines gradually decreased from the rostral to caudal spinal segments, but the proportion was maintained throughout the cervical cord. Over 75% of CS streamlines arose from the lateral surface of the frontal lobe, which may explain the voluntary control of dexterous and flexible limb movements in humans. (197/200 words).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2022.06.008DOI Listing

Publication Analysis

Top Keywords

cortical areas
16
motor area
12
limb movements
8
cervical cord
8
streamlines arose
8
cingulate zone
8
cortical
5
areas
5
quantitative comparison
4
comparison corticospinal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!