Pulmonary hypertension, conventionally defined by absolute pulmonary artery pressure, is the result of a range of diagnoses that can result in clinical problems in neonatal practice. Causes include persistent pulmonary hypertension of the newborn, congenital heart disease, and left heart dysfunction, as well as the normally high pulmonary artery resistance in neonates. Elucidating the cause of pulmonary hypertension is vital to guide appropriate management. A first principles approach based on hemodynamic calculations provides a framework for the diagnostic work up and subsequent therapy. Central to this is the equation 'pressure = flow x resistance' and knowledge of factors contributing to flow and resistance and their impact on pulmonary artery pressure. While formal, accurate, calculation of each element is usually not required or deliverable in small infants, clinical and echocardiographic parameters, combined with an understanding of the interplay between pressure, flow, and resistance, significantly improves the assessment and management of neonatal pulmonary hemodynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.siny.2022.101371 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!