The dynamic processes of conformational changes of supramolecules are important to understand the motion in synthetic supramolecules. Although a host-guest complex is the most basic supramolecule, a detailed mechanism of its conformational changes has rarely been studied. Here, we observed the large conformational change of a dibenzo-24-crown-8 complex with four guest ions (Ag, Na, K, and NH) at low temperature in the gas phase. The isomerization between the two types of conformers, which have different distances between the two benzene rings, proceeds even at 86 K. Using variable-temperature ion mobility-mass spectrometry (IM-MS) at 100-210 K, the activation energy for the isomerization is determined to be rather small (4.8-9.0 kJ mol). Reaction pathway calculations revealed that the isomerization is caused by the sequential rotation of two single bonds in the crown ether ring. The present cryogenic IM-MS study of the host-guest complexes at the molecular level opens an approach to detailed understanding of the motion in supramolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c02271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!