The principle of least action is the cornerstone of classical mechanics, theory of relativity, quantum mechanics, and thermodynamics. Here, we describe how a neural network (NN) learns to find the trajectory for a Lennard-Jones (LJ) system that maintains balance in minimizing the Onsager-Machlup (OM) action and maintaining the energy conservation. The phase-space trajectory thus calculated is in excellent agreement with the corresponding results from the "ground-truth" molecular dynamics (MD) simulation. Furthermore, we show that the NN can easily find structural transformation pathways for LJ clusters, for example, the basin-hopping transformation of an LJ from an incomplete Mackay icosahedron to a truncated face-centered cubic octahedron. Unlike MD, the NN computes atomic trajectories over the entire temporal domain in one fell swoop, and the NN time step is a factor of 20 larger than the MD time step. The NN approach to OM action is quite general and can be adapted to model morphometrics in a variety of applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326973 | PMC |
http://dx.doi.org/10.1021/acs.jcim.2c00515 | DOI Listing |
BMC Bioinformatics
December 2024
College of Computer and Information Engineering/College of Artificial Intelligence, Nanjing Tech University, Nanjing, 210093, China.
Background: The collection of substantial amounts of electroencephalogram (EEG) data is typically time-consuming and labor-intensive, which adversely impacts the development of decoding models with strong generalizability, particularly when the available data is limited. Utilizing sufficient EEG data from other subjects to aid in modeling the target subject presents a potential solution, commonly referred to as domain adaptation. Most current domain adaptation techniques for EEG decoding primarily focus on learning shared feature representations through domain alignment strategies.
View Article and Find Full Text PDFBMC Psychiatry
December 2024
Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China.
Background: Cognitive impairment is prevalent in bipolar disorder (BD), and has negative impacts on functional impairments and quality of life, despite euthymic states in most individuals. The underlying neurobiological basis of cognitive impairment in BD is still unclear.
Methods: To further explore potential connectivity abnormalities and their associations with cognitive impairment, we conducted a degree centrality (DC) analysis and DC (seed)-based functional connectivity (FC) approach in unmedicated, euthymic individuals with BD.
Commun Med (Lond)
December 2024
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
Background: Wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) remains challenging despite numerous 12-lead electrocardiogram (ECG) criteria and algorithms. Automated solutions leveraging computerized ECG interpretation (CEI) measurements and engineered features offer practical ways to improve diagnostic accuracy. We propose automated algorithms based on (i) WCT QRS polarity direction (WCT Polarity Code [WCT-PC]) and (ii) QRS polarity shifts between WCT and baseline ECGs (QRS Polarity Shift [QRS-PS]).
View Article and Find Full Text PDFCommun Eng
July 2024
EPIC, Large Area Thin-film Transistor Electronics, imec, Kapeldreef 75, 3001, Leuven, Belgium.
Spiking neural network algorithms require fine-tuned neuromorphic hardware to increase their effectiveness. Such hardware, mainly digital, is typically built on mature silicon nodes. Future artificial intelligence applications will demand the execution of tasks with increasing complexity and over timescales spanning several decades.
View Article and Find Full Text PDFCommun Biol
December 2024
Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
The functional organization of the human object vision pathway distinguishes between animate and inanimate objects. To understand animacy perception, we explore the case of zoomorphic objects resembling animals. While the perception of these objects as animal-like seems obvious to humans, such "Animal bias" is a striking discrepancy between the human brain and deep neural networks (DNNs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!