Bioprinting is an emerging tissue engineering technique that has attracted the attention of researchers around the world, for its ability to create tissue constructs that recapitulate physiological function. While the technique has been receiving hype, there are still limitations to the use of bioprinting in practical applications, much of which is due to inappropriate bioink design that is unable to recapitulate complex tissue architecture. Silk fibroin (SF) is an exciting and promising bioink candidate that has been increasingly popular in bioprinting applications because of its processability, biodegradability, and biocompatibility properties. However, due to its lack of optimum gelation properties, functionalization strategies need to be employed so that SF can be effectively used in bioprinting applications. These functionalization strategies are processing methods which allow SF to be compatible with specific bioprinting techniques. Previous literature reviews of SF as a bioink mainly focus on discussing different methods to functionalize SF as a bioink, while a comprehensive review on categorizing SF functional methods according to their potential applications is missing. This paper seeks to discuss and compartmentalize the different strategies used to functionalize SF for bioprinting and categorize the strategies for each bioprinting method (namely, inkjet, extrusion, and light-based bioprinting). By compartmentalizing the various strategies for each printing method, the paper illustrates how each strategy is better suited for a target tissue application. The paper will also discuss applications of SF bioinks in regenerating various tissue types and the challenges and future trends that SF can take in its role as a bioink material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.2c00313 | DOI Listing |
Environ Entomol
January 2025
Department of Entomology, University of Georgia, Tifton, GA, USA.
Wild bee communities are the target of various conservation and ecological restoration programs. Strategic conservation can influence bee communities visiting fields and help mitigate pollinator limitations in fruit production. However, planning compatible conservation strategies and gauging their effectiveness requires understanding how local communities vary across space and time in crops and adjacent semi-natural areas.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.
Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Institut de Recherche pour le Développement, Institut National Polytechnique de Toulouse, Université Toulouse 3 - Paul Sabatier, Toulouse F-31062, France.
Unlike most rivers globally, nearly all lowland Amazonian rivers have unregulated flow, supporting seasonally flooded floodplain forests. Floodplain forests harbor a unique tree species assemblage adapted to flooding and specialized fauna, including fruit-eating fish that migrate seasonally into floodplains, favoring expansive floodplain areas. Frugivorous fish are forest-dependent fauna critical to forest regeneration via seed dispersal and support commercial and artisanal fisheries.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.
View Article and Find Full Text PDFChemistry
January 2025
Umeå Universitet: Umea Universitet, Department of Chemistry, Department of Chemistry, 90187, Umeå, SWEDEN.
Chemically induced dimerization/proximity (CID/CIP) systems controlled by chemical dimerizers (also known as molecular glues) provide valuable means for understanding and manipulating complex, dynamic biological systems. In this study, we present the development of versatile chemo-optogenetic systems utilizing azobenzene-based photoswitchable molecular glues (sMGs) for reversible protein dimerization controlled by visible light. These systems allow multiple cycles of light-induced dimerization, overcoming the limitations of irreversible photolysis in previous systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!