2D/2D Interface Engineering Promotes Charge Separation of MoC/g-CN Nanojunction Photocatalysts for Efficient Photocatalytic Hydrogen Evolution.

ACS Appl Mater Interfaces

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

Published: July 2022

The focus of designing and synthesizing composite catalysts with high photocatalytic efficiency is the regulation of nanostructures and optimization of heterojunctions. By increasing the contact area between the catalysts, additional reaction sites can be established and charge carriers can be transferred and reacted faster. Here, two-dimensional (2D) MoC is prepared via a novel approach by carbonizing precursors intercalated by low-boiling solvents, and a composite catalyst MoC/graphitic carbon nitride (g-CN) with 2D to 2D structure optimization was synthesized through the self-assembly of 2D MoC and 2D g-CN. The hydrogen production rate of the photocatalyst at the optimal ratio is 675.27 μmol g h, which further exceeds 2D g-CN. It is 5.1 times that of the 7 wt % B/2D MoC/g-CN photocatalyst and also 3.5 times that of 0.5 wt % Pt/g-CN. The enhanced photocatalytic activity is attributed to the fact that MoC as a cocatalyst can rapidly transfer the photogenerated electrons of g-CN to the surface of MoC, and the 2D to 2D structure can provide abundant reaction sites for photogenerated electrons to prevent their recombination with holes. This study provides new ideas and techniques for the development of 2D platinum-like cocatalysts and the optimization of nanojunctions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c03421DOI Listing

Publication Analysis

Top Keywords

reaction sites
8
photogenerated electrons
8
2d/2d interface
4
interface engineering
4
engineering promotes
4
promotes charge
4
charge separation
4
separation moc/g-cn
4
moc/g-cn nanojunction
4
nanojunction photocatalysts
4

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Elucidating the degradation mechanism of beef myofibrillar proteins under hydroxyl radical oxidation through the lens of cysteine oxidation modifications.

Food Chem X

January 2025

Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.

The study aimed to assess the oxidative modification behavior of bovine myofibrillar proteins (MPs) cysteines (Cys) by hydroxyl radical (·OH) through the construction of an in vitr Fenton reaction system. The ·OH generated by the Fenton reaction induced large-scale oxidative modification of Cys, and redox proteomics identified a total of 1192 differential oxidation sites (Dos), 59 Dos were located in the MPs structure. The Cys of actin (17 Dos), myosin/myomesin (16 Dos), tenascin (12 Dos) and sarcomere (10 Dos) in the MPs structure showed active oxidative modification behavior towards ·OH, especially with the "-C-X-X-X-X-W-" structure amino acid sequence showed high sensitivity.

View Article and Find Full Text PDF

In the realm of zinc-air batteries, high bifunctional catalytic efficacy is intimately tied to the evaluation of catalysts. Consequently, the pursuit of proficient bifunctional catalysts that can efficiently catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a paramount objective in this research area. In this study, the spiny cobalt tetroxide (CoO) encapsulated hollow carbon spheres (HCSs) are constructed by anchoring CoO onto HCS via hydrothermal or annealing treatment.

View Article and Find Full Text PDF

Weak Covalent Bonds and Mechanochemistry for Synergistic Self-Strengthening of Elastomers.

J Am Chem Soc

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China.

The macroscopic properties of elastomers are intimately linked to their molecular reactivity and mechanisms. Here, we propose a new strategy for designing strengthening materials based on the synergy of weak covalent bonds and mechanochemistry. After mechanical treatment, the failure strength and toughness of the elastomer increased from 2.

View Article and Find Full Text PDF

The reaction mechanisms of ethylene oxide and propylene oxide with food Simulants: Based on experiments and computational analysis.

Food Res Int

February 2025

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Ethylene oxide (EO) and propylene oxide (PO) are widely used as sterilizing agents in the food industry. However, their residues in food packaging can migrate into food and react with it, affecting the accuracy of residue detection in food. This study aims to explore the reaction mechanisms between EO and PO and aqueous food simulants using both experimental and computational methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!