A carrier-free metal-organic hybrid nanoassembly with combination anti-viral and hepato-protective activity for hepatitis B treatment.

Biomater Sci

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Metabolism and Pharmacokinetics and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.

Published: July 2022

Hepatitis B represents a major global public health burden, which is caused by the hepatitis B virus (HBV) with a high infection rate. Although several anti-HBV drugs have been developed for clinical treatment of hepatitis B, the current therapeutic strategies still suffer from undeniable adverse effects, insufficient efficacy after systemic administration and chronic inflammation. Here, we develop a carrier-free metal-organic hybrid nanoassembly that is co-loaded with tenofovir (TFV), an anti-viral agent and phosphorylated glycyrrhetinic acid (GAP), an anti-inflammatory compound (TFV/GAP/NA) to enhance the anti-HBV effect and alleviate the inflammatory response for hepatitis B treatment. The nanoassembly is easily prepared through the ionic interactions between the anionic phosphonate/phosphate groups from TFV/GAP and the zirconium cation, which has a stable nanostructure and a high drug-loading capacity. The nanoassembly prolongs the circulation time with reduced drug leakage in the blood and elevates drug accumulation in the liver after intravascular administration. After internalization mediated by the GAP ligand-GA receptor interaction, TFV/GAP/NA disassembles by the phosphatase-triggered degradation of the phosphate ester bonds in GAP and releases TFV, GAP and GA within the HBV-positive hepatocytes. The released TFV interferes with the HBV polymerase to inhibit the viral DNA replication, while the released GAP and GA suppress the pro-inflammatory protein expression. In mouse models, treatment with TFV/GAP/NA inhibits HBV production and alleviates inflammation-mediated liver injury.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2bm00407kDOI Listing

Publication Analysis

Top Keywords

carrier-free metal-organic
8
metal-organic hybrid
8
hybrid nanoassembly
8
hepatitis treatment
8
treatment hepatitis
8
hepatitis
5
gap
5
nanoassembly
4
nanoassembly combination
4
combination anti-viral
4

Similar Publications

Atherosclerosis remains a significant global health challenge, with its related conditions as the leading cause of death, underscoring the urgent need for enhanced diagnostic and therapeutic approaches. Recently, self-assembled nanoparticles (SANPs) have shown remarkable promise in treating atherosclerosis, attributed to their superior bioavailability, biodegradability, biocompatibility, and ease of functional modification. Numerous SANP variants, such as DNA origami, metal-organic frameworks (MOFs), nanozymes, peptide-based nanoparticles, and self-assembled prodrug nanoparticles, have been engineered, extending their utility in targeted drug delivery and imaging.

View Article and Find Full Text PDF

Current antitumor monotherapy has many limitations, highlighting the need for novel synergistic anticancer strategies. Ferroptosis is an iron-dependent form of nonapoptotic cell death that plays a pivotal regulatory role in tumorigenesis and treatment. Photodynamic therapy (PDT) causes irreversible chemical damage to target lesions and is widely used in antitumor therapy.

View Article and Find Full Text PDF

Nanoscale MOFs in nanomedicine applications: from drug delivery to therapeutic agents.

J Mater Chem B

April 2023

Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.

Metal-organic frameworks (MOFs) hold great promise for widespread applications in biomedicine and nanomedicine. MOFs are one of the most fascinating nanocarriers for drug delivery, benefiting from their high porosity and facile modification. Furthermore, the tailored components of MOFs can be therapeutic agents for various treatments, including drugs as organic ligands of MOFs, active metal as central metal ions of MOFs, and their combinations as carrier-free MOF-based nanodrug.

View Article and Find Full Text PDF

A carrier-free metal-organic hybrid nanoassembly with combination anti-viral and hepato-protective activity for hepatitis B treatment.

Biomater Sci

July 2022

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Metabolism and Pharmacokinetics and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.

Hepatitis B represents a major global public health burden, which is caused by the hepatitis B virus (HBV) with a high infection rate. Although several anti-HBV drugs have been developed for clinical treatment of hepatitis B, the current therapeutic strategies still suffer from undeniable adverse effects, insufficient efficacy after systemic administration and chronic inflammation. Here, we develop a carrier-free metal-organic hybrid nanoassembly that is co-loaded with tenofovir (TFV), an anti-viral agent and phosphorylated glycyrrhetinic acid (GAP), an anti-inflammatory compound (TFV/GAP/NA) to enhance the anti-HBV effect and alleviate the inflammatory response for hepatitis B treatment.

View Article and Find Full Text PDF

Diabetes is a chronic metabolic disease caused by insufficient insulin secretion and insulin resistance. Natural product is one of the most important resources for anti-diabetic drug. However, due to the extremely complex composition, this research is facing great challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!