A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery. | LitMetric

Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery.

Curr Top Med Chem

Bioinformatics Infrastructure Facility (BIF), Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007, India.

Published: September 2022

Background: The lengthy and expensive process of developing a novel medicine often takes many years and entails a significant financial burden due to its poor success rate. Furthermore, the processing and analysis of quickly expanding massive data necessitate the use of cutting-edge methodologies. As a result, Artificial Intelligence-driven methods that have been shown to improve the efficiency and accuracy of drug discovery have grown in favor.

Objective: The goal of this thorough analysis is to provide an overview of the drug discovery and development timeline, various approaches to drug design, and the use of Artificial Intelligence in many aspects of drug discovery.

Methods: Traditional drug development approaches and their disadvantages have been explored in this paper, followed by an introduction to AI-based technology. Also, advanced methods used in Machine Learning and Deep Learning are examined in detail. A few examples of big data research that has transformed the field of medication discovery have also been presented. Also covered are the many databases, toolkits, and software available for constructing Artificial Intelligence/Machine Learning models, as well as some standard model evaluation parameters. Finally, recent advances and uses of Machine Learning and Deep Learning in drug discovery are thoroughly examined, along with their limitations and future potential.

Conclusion: Artificial Intelligence-based technologies enhance decision-making by utilizing the abundantly available high-quality data, thereby reducing the time and cost involved in the process. We anticipate that this review would be useful to researchers interested in Artificial Intelligencebased drug development.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026622666220701091339DOI Listing

Publication Analysis

Top Keywords

machine learning
12
drug discovery
12
artificial intelligence
8
drug
8
drug design
8
drug development
8
learning deep
8
deep learning
8
artificial
6
discovery
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!