Introduction: SARS-CoV-2 belongs to the coronavirus family, a large family of viruses infecting avian and mammalian hosts. Accumulated mutations over time in the genome of SARS-CoV-2 have given rise to different variants differing in type and sequence. Variants that did not affect transmissibility, infectivity, and severity have gone unnoticed, and mutations that made the virus unfit for survival were eventually deleted from the gene pool. An emerging variant in the host population needs to be monitored closely for its infection consequences. In addition, the variants of concern (VOC) need to be focused on developing effective disease-fighting regimes. As viral epidemics are better fought using effective vaccines, several vaccines have been developed and used since December 2020. The central point of the present study is the continuous variation in the genome of SARS-CoV-2, instigating the researchers to refine their modus operandi to fight against COVID-19.
Methods: Prominent medical and literature databases were searched using relevant keywords to gather study results, reports, and other data helpful in writing this narrative review.
Results: This article successfully collates information about the structure and life cycle of SARS-CoV-2, followed by types and nomenclature of mutations in SARS-CoV-2. Variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron) are current VOCs due to their widespread transmission capability and probable immune evasion. Furthermore, this review article presents information about the major vaccines available and those under development. Based on the original and new strains of SARS-CoV-2, 19 vaccines have been granted emergency use or conditional marketing approvals, 141 are under clinical development, and 194 are in preclinical development stages worldwide.
Conclusion: Continuous variation in the genome of SARS-CoV-2, presenting new VOCs frequently, has posed a compelling need to amend and evolve current and future vaccine development strategies to overpower the ever-evolving virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612828666220701160116 | DOI Listing |
J Occup Environ Hyg
January 2025
Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran.
The pathogenic potential of airborne particles carrying the SARS-CoV-2 viral genome was examined by considering the size distribution of airborne particles at given distances from the respiratory zone of an infected patient after coughing or sneezing with a focus on time, temperature, and relative humidity. The results show an association between the size distribution of airborne particles, particularly PM and PM, and the presence of viral genome in different stations affected by the distance from the respiratory zone and the passage of time. The correlation with time was strong with all the dependent factors except PM.
View Article and Find Full Text PDFPLoS One
January 2025
SLAC National Accelerator Laboratory, Stanford University, Stanford, California, United States of America.
Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve.
View Article and Find Full Text PDFLearn Health Syst
January 2025
Department of Biomedical Informatics University of Arkansas for Medical Sciences, College of Medicine Little Rock Arkansas USA.
Objective: This project demonstrates the feasibility of connecting medical imaging data and features, SARS-CoV-2 genome variants, with clinical data in the National Clinical Cohort Collaborative (N3C) repository to accelerate integrative research on detection, diagnosis, and treatment of COVID-19-related morbidities. The N3C curated a rich collection of aggregated and de-identified electronic health records (EHR) data of over 18 million patients, including 7.5 million COVID-positive patients, seen at hospitals across the United States.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Infectious Diseases, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Human nasal epithelium (HNE) organoid models of SARS-CoV-2 infection were adopted globally during the COVID-19 pandemic once it was recognized that the Vero cell line commonly used by virologists did not recapitulate human infection. However, the widespread use of HNE organoid infection models was hindered by the high cost of media and consumables, and the inherent limitation of basal cells as a scalable continuous source of cells. The human Calu-3 cell line, generated from a lung adenocarcinoma, was shown to largely recapitulate infection of the human epithelium and to preserve the SARS-CoV-2 genomic fidelity.
View Article and Find Full Text PDFInfection
January 2025
Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany.
The Post COVID-19 condition (PCC) is a complex disease affecting health and everyday functioning. This is well reflected by a patient's inability to work (ITW). In this study, we aimed to investigate factors associated with ITW (1) and to design a machine learning-based model for predicting ITW (2) twelve months after baseline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!