Objective: To study the factors related to neonatal infection, as well as bacterial distribution and drug resistance in neonatal infections, in an obstetrics and gynecology hospital in Shanghai.
Methods: The bacterial culture and drug resistance monitoring results from neonates treated at the hospital from January 2020 to June 2021 were analyzed and compared with the data for children and newborns from the national bacterial resistance surveillance report.
Results: Among the 209 bacterial strains isolated from infected neonates, 90 were gram-positive, including the four most common isolates: coagulase-negative Staphylococcus, Staphylococcus aureus, Enterococcus, and Streptococcus agalactiae. The remaining 119 strains were gram-negative and included Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter aerogenes. The drug sensitivity results showed that the methicillin-resistant Staphylococcus aureus isolates were sensitive to linezolid, vancomycin, rifampicin, levofloxacin, and gentamicin. All Klebsiella pneumoniaisolates were sensitive to amikacin, ertapenem, imipenem, and gentamicin. These two strains were resistant to other antibiotics to varying degrees.
Conclusions: Understanding the distribution and drug resistance of bacterial pathogens is vital for guiding the rational selection of antibiotics and reducing neonatal mortality and nosocomial infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731785 | PMC |
http://dx.doi.org/10.1055/a-1850-2475 | DOI Listing |
Chin Med
January 2025
Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
Background: With extended gefitinib treatment, the therapeutic effect in some non-small cell lung cancer (NSCLC) patients declined with the development of drug resistance. Aidi injection (ADI) is utilized in various cancers as a traditional Chinese medicine prescription. This study explores the molecular mechanism by which ADI, when combined with gefitinib, attenuates gefitinib resistance in PC9GR NSCLC cells.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, P.O. Box 9086, Addis Ababa, Ethiopia.
Bacterial infections commonly complicate cutaneous leishmaniasis (CL), worsening the disease and delaying healing. Despite this, there is a gap in research concerning the characteristics of pathogenic microorganisms associated in CL patients. This study aims to identify bacterial isolates and drug susceptibility patterns in CL patients.
View Article and Find Full Text PDFMycoses
January 2025
Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.
Background: Microsporum canis, a dermatophyte commonly associated with pets, is a leading cause of severe tinea capitis. The increasing prevalence of antifungal resistance among dermatophytes poses a significant global health challenge.
Objectives: This study aims to define the updated antifungal susceptibility profile of M.
Probiotics Antimicrob Proteins
January 2025
Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, 191002, Saint Petersburg, Russia.
Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!