Micro/nanoplastics (MNPLs) are considered emergent pollutants widely spread over all environmental compartments. Although their potential biological effects are being intensively evaluated, many doubts remain about their potential health effects in humans. One of the most underdeveloped fields is the determination of the potential tumorigenic risk of MNPLs exposure. To shed light on this topic, we have designed a wide battery of different hallmarks of cancer applied to prone-to-transformed progress MEF cells exposed to polystyrene nanoplastics (PSNPLs) in the long term (6 months). Interestingly, most of the evaluated hallmarks of cancer are exacerbated after exposure, independently if they are associated with an early tumoral phenotype (changes in stress-related genes, or microRNA deregulation), advanced tumoral phenotype (growing independently of anchorage ability, and migration capacity), or an aggressive tumoral phenotype (invasion potential, changes in pluripotency markers, and ability to grow to form tumorspheres). This set of obtained data constitutes a relevant warning on the potential carcinogenic risk associated with long-term exposures to MNPLs, specifically that induced by the PSNPLs evaluated in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129470 | DOI Listing |
Int J Surg
January 2025
Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.
Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.
J Mater Chem B
January 2025
Biomaterials Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius.
Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
The development of malignant tumors is a complex process that involves the tumor microenvironment (TME). An immunosuppressive TME presents significant challenges to current cancer therapies, serving as a key mechanism through which tumor cells evade immune detection and play a crucial role in tumor progression and metastasis. This impedes the optimal effectiveness of immunotherapeutic approaches, including cytokines, immune checkpoint inhibitors, and cancer vaccines.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ);
Glioblastoma (GBM) is described as a group of highly malignant primary brain tumors and stands as one of the most lethal malignancies. The genetic and cellular characteristics of GBM have been a focal point of ongoing research, revealing that it is a group of heterogeneous diseases with variations in RNA expression, DNA methylation, or cellular composition. Despite the wealth of molecular data available, the lack of transferable pre-clinic models has limited the application of this information to disease classification rather than treatment stratification.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
Background: Chest computed tomography (CT) is a valuable tool for diagnosing and predicting the severity of coronavirus disease 2019 (COVID-19) and assessing extrapulmonary organs. Reduced muscle mass and visceral fat accumulation are important features of a body composition phenotype in which obesity and muscle loss coexist, but their relationship with COVID-19 outcomes remains unclear. In this study, we aimed to investigate the association between the erector spinae muscle (ESM) to epicardial adipose tissue (EAT) ratio (ESM/EAT) on chest CT and disease severity in patients with COVID-19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!