Hofmeister effect in gelatin-based hydrogels with shape memory properties.

Colloids Surf B Biointerfaces

School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.

Published: September 2022

The soaking strategy with the Hofmeister effect has been proposed to fabricate gelatin- based hydrogels with excellent properties. However, the modulation mechanism of hydrogels lacks in-depth study. In this work, we studied in detail the effects of Hofmeister ions on the structural, thermal, viscoelastic and mechanical properties of gelatin hydrogels. The results showed that kosmotropic anions (Cit, SO, HPO and SO) enhanced hydrogen bonds and hydrophobic interactions between gelatin molecules, resulting in increases in the length and content of triple helices and thus improving the properties of gelatin hydrogels. In contrast, chaotropic anions (I and SCN) weakened the interactions between gelatin molecules, and thus attenuated the properties. Based on the Hofmeister effect, we successfully fabricated gelatin poly N-methylolacrylamide (PNMA) double network hydrogels with shape memory properties. The Hofmeister effect provides an excellent route for the rational design and fabrication of functional gelatin-based hydrogels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2022.112674DOI Listing

Publication Analysis

Top Keywords

gelatin-based hydrogels
8
hydrogels shape
8
shape memory
8
memory properties
8
properties gelatin
8
gelatin hydrogels
8
interactions gelatin
8
gelatin molecules
8
hydrogels
7
properties
6

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense extracellular matrix (ECM) exhibiting high stiffness and fast stress relaxation. In this work, gelatin-based viscoelastic hydrogels were developed to mimic the compositions, stiffness, and fast stress relaxation of PDAC tissues. The hydrogels were cross-linked by gelatin-norbornene-boronic acid (GelNB-BA), thiolated macromers, and a 1,2-diol-containing linear synthetic polymer PHD.

View Article and Find Full Text PDF

Conductive hydrogel luminal filler for peripheral nerve regeneration.

Biomaterials

January 2025

School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea. Electronic address:

Peripheral nerve injuries impair quality of life due to pain and loss of sensory and motor functions. Current treatments like autografts and nerve guidance conduits (NGCs) have limitations in functional restoration. Luminal fillers can enhance the effectiveness of NGCs by providing beneficial intraneural environments.

View Article and Find Full Text PDF

3D Bioprinted Head and Neck Squamous Cell Carcinoma (HNSCC) Model Using Tunicate Derived Nanocellulose (NC) Bioink.

Adv Healthc Mater

January 2025

Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, 68167, Mannheim, Germany.

Head and neck squamous cell carcinoma (HNSCC) are invasive solid tumors accounting for high mortality. To improve the clinical outcome, a better understanding of the tumor and its microenvironment (TME) is crucial. Three -dimensional (3D) bioprinting is emerging as a powerful tool for recreating the TME in vitro.

View Article and Find Full Text PDF

Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native tissues. Gelatin-based bioinks are widely used in wound healing due to their excellent biocompatibility, biodegradability, non-toxicity, and ability to accelerate extracellular matrix formation.

View Article and Find Full Text PDF

Chemically defined and dynamic click hydrogels support hair cell differentiation in human inner ear organoids.

Stem Cell Reports

December 2024

Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:

The mechanical properties in the inner ear microenvironment play a key role in its patterning during embryonic development. To recapitulate inner ear development in vitro, three-dimensional tissue engineering strategies including the application of representative tissue models and scaffolds are of increasing interest. Human inner ear organoids are a promising model to recapitulate developmental processes; however, the current protocol requires Matrigel that contains ill-defined extracellular matrix components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!