The negative effects of effluent organic matter (EfOM) on receiving aquatic environments and advanced treatment facilities pose significant concerns. However, the effective removal of EfOM is challenging due to its chemically complex nature and its refractory characteristics. In this study, two Fe(II)-assisted oxidation processes including UV/Fe(II)/HO and UV/Fe(II)/persulfate (UV/Fe(II)/PS) were investigated to promote EfOM reduction. Fe(II) was essential for promoting EfOM degradation. The mineralization rate of EfOM increased from 7 to 29% with 2 mM Fe(II) addition in the UV/HO process and to 23% with 0.8 mM Fe(II) addition in the UV/PS process. A preliminary experiment was conducted to obtain the optimal molar ratio of oxidant to Fe(II) for practical applications based on different indicators. The form of Fe(III) prevalent at different pH values strongly affected Fe(II)/Fe(III) cycling, thus determining the progress of EfOM degradation. A machine learning approach consisting of parallel factor analysis coupled with self-organizing maps (PARAFAC-SOM) was employed with fluorescence spectra to visualize the degradation behavior of EfOM in the different reaction systems. Four components (i.e., two humic-like substances, one fulvic acid, and one tryptophan-like substance) were eventually identified, and their reductions reached more than 62% during the Fe(II)-assisted oxidation processes. The degradation orders for each component in the different oxidation processes were initially evaluated by SOM analysis with F percentage data. The degradation behavior of EfOM in the UV/Fe(II)/HO and UV/Fe(II)/PS systems exhibited different trends based on the best matching unit map and component planes. The humic-like component was more refractory than the other three components in both oxidation processes. The microbial humic-like and high-molecular-weight fulvic acid substances showed higher reactivity with SO· than with ·OH, while the tryptophan-like substance was more reactive in the UV/Fe(II)/HO system than in the UV/Fe(II)/PS system. The outcomes of this study provide new insights into the degradation behavior of EfOM, promoting the development of advanced wastewater treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2022.118789 | DOI Listing |
ACS Nano
January 2025
Department of Urology, Peking University First Hospital, Beijing 100034, China.
Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.
View Article and Find Full Text PDFChem Rev
January 2025
Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China.
Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) , thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.
View Article and Find Full Text PDFISME J
January 2025
State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.
View Article and Find Full Text PDFACS Sens
January 2025
School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.
Monitoring volatile organic compounds (VOCs) is crucial for ensuring safety and health. In this study, we introduce a strategy to engineer a chromatography-inspired single-sensor (CISS) e-nose tailored for VOC monitoring. This approach overcomes the limitations of traditional methodologies and conventional e-noses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!