Neodymium oxide exhibits a unique property, which facilitates and largely utilized as an industrial applications. A number of cytotoxic study is available but very limited information is available to understand their biological activity with neodymium oxide at a very low conc- entration of the material. The present work was designed to understand the cytotoxicity against liver (HepG-2) and lung (A-549) cancer cells. Initially, Neodymium oxides (NdO) were prepared and characterized with various instruments. The crystallinity and morphology of NdO powder were examined with instruments such as X-Ray Diffraction (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy Dispersive X-Ray Analysis (EDX) respectively, revealed the size of curved nanostructure are ~140 ± 2 in diameter whereas length goes upto ~700 nm with elemental composition. The cytotoxicity study was conducted with MTT, NRU assay with genotoxicity study via ROS, cell cycle and qPCR analysis. The cells cytotoxic assessment were analysed via MTT(3-(4,5-Dimethylthiazol-2-yl)- 2,5-Diphenyl tetra zolium Bromide) and Neutral Red Uptake (NRU) assay with neodymium oxide (NdO), which indicates the reduction in cell viability. Additionally, cell-cycle analysis showed an increase in the apoptotic peak after a 24-h. Quantitative real-time PCR (RT-PCR) data revealed that apoptotic genes such as p53, bax, and caspase-3 were up regulated, whereas bcl-2, an anti-apoptotic gene, was down regulated; therefore, apoptosis was mediated through ROS and genotoxicity pathways. The experiments of cytotoxicity was tested and concludes that the NdO express a moderate and dose dependent effect on cancer cells. The ROS, cell cycle analysis and qPCR showed that NdO exhibit the capability to cells death via ROS generation and genotoxicity study pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2022.127029 | DOI Listing |
Toxics
December 2024
Department of Public Health, International College, Krirk University, Bangkok 10220, Thailand.
Nanoparticles of neodymium oxide (NPs-NdO) can induce respiratory-related diseases, including lung tissue injury when entering the organism through the respiratory tract. However, it is currently unclear whether they can induce epithelial-mesenchymal transition (EMT) in lung tissue and the related mechanisms. In this study, we investigated the function of circ_009773 in the process of EMT induced by NPs-NdO in lung tissue from in vivo as well as in vitro experiments.
View Article and Find Full Text PDFFront Public Health
November 2024
Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China.
Introduction: Rare earth elements (REEs) are widely used in plenty of fields. REEs have significant neurotoxicity and it may adversely affect the development of cognitive. For example, neodymium will causing neurological damage through penetrate the blood-brain barrier (BBB).
View Article and Find Full Text PDFEnviron Pollut
October 2024
School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China. Electronic address:
Neodymium oxide (NdO) is a rare earth element that can lead to various type of tissue and organ damage with prolonged exposure. The long noncoding RNA small nucleolar ribonucleic acid host gene 5 (lncRNA SNHG5) plays a role in disease progressiong. However, its connection with NdO induced reproductive harm in males has not been thoroughly investigated.
View Article and Find Full Text PDFSci Rep
April 2024
Spectroscopy Department, Physics Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt.
Our study focused on the optical behavior, methylene blue (MB) dye degradation potential, antibacterial performance, and silver and trioxide mineral interaction with different bacterial species. We found that the addition of silver nanoparticles (Ag NPs) to neodymium oxide (NdO) resulted in a significant response, with an enlargement of the inhibition zone for bacterial species such as Staphylococcus aureus and Escherichia coli. Specifically, the inhibition zone for S.
View Article and Find Full Text PDFEnviron Pollut
May 2024
John A. Reif, Jr. Department of Civil & Environmental Engineering, New Jersey Institute of Technology, 07102, Newark, NJ, United States; Now at Civil, Structural and Geospatial Engineering Department, School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom.
Sustainable technologies for the recovery of rare earth elements (REE) from waste need to be developed to decrease the volume of ore mining extractions and its negative environmental consequences, while simultaneously restoring previously impacted lands. This is critical due to the extensive application of REE in everyday life from electronic devices to energy and medical technologies, and the dispersed distribution of REE resources in the world. REE recovery by plants has been previously studied but the feasibility of REE phytoextraction from a poorly soluble solid phase (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!