A real rejuvenator must have the ability to disaggregate oxidized asphaltene nanoclusters. However, few studies pay attention to the topic, and there is a lack of comparison of the disaggregation ability of different rejuvenators. Thus, the disaggregation ability and regeneration mechanism of three bio-rejuvenators (waste cooking oil (WCO), waste wood oil (WWO), and straw liquefied residue oil (SLRO)) on oxidized asphaltene nanoclusters were studied in this paper. Laboratory tests and molecular dynamics (MD) simulation were used to compare the effectiveness of the three bio-rejuvenators and reveal its corresponding mechanism. It is found that these bio-rejuvenators have a softening effect on aged asphalt binder, but not all of them can disaggregate oxidized asphaltene nanoclusters. The introduction of WWO and WCO can effectively disturb the nanoclusters caused by the increase of polar functional groups during the oxidation process. The effect of WWO is more significant, but neither of them can restore the asphaltene dispersion to the virgin asphalt binder. SLRO has an adverse effect on the disaggregation of oxidized asphaltene nanoclusters. WCO, WWO, and SLRO showed different disaggregation mechanisms, including ″pull-out, intercalation, and compression″, respectively. WCO and WWO can increase the activation energy reduced by aging in a short aging time, and SLRO makes the activation energy lower. Such findings can help enterprises screen more reasonable rejuvenators to facilitate the recycling of reclaimed asphalt pavement (RAP) materials and promote the sustainable development of the construction industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244907 | PMC |
http://dx.doi.org/10.1021/acsomega.2c01810 | DOI Listing |
Int J Mol Sci
November 2024
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.
J Am Soc Mass Spectrom
January 2025
LysisLogic Scientific Inc., Energy Transition Centre, Calgary, Alberta T2P 0H3, Canada.
This Perspective explores the transformative impact of ultrahigh-resolution mass spectrometry (UHR-MS), particularly Fourier transform ion cyclotron resonance (FT-ICR-MS), in the characterization of complex environmental and petroleum samples. UHR-MS has significantly advanced our ability to identify molecular formulas in complex mixtures, revolutionizing the study of biogeochemical processes and organic matter evolution on wide time scales. We start by briefly reviewing the main technological advances of UHR-MS in the context of petroleum and environmental applications, highlighting some of the challenges of the technology such as quantitation and structural identification.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman, Iran.
Sci Rep
October 2024
Petroleum Engineering and Gas Technology Department, Faculty of Energy and Environmental Engineering, British University in Egypt (BUE), El Sherouk City, Cairo, Egypt.
Unconventional resources, such as heavy oil, are increasingly being explored and exploited due to the declining availability of conventional petroleum resources. Heavy crude oil poses challenges in production, transportation, and refining, due to its high viscosity, low API gravity, and elevated sulfur and metal content. Improving the quality of heavy oil can be achieved through the application of steam injection, which lowers the oil's viscosity and enhances its flow.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
The Department of Materials and Chemical Engineering, Zibo Vocational Institute, Zibo, 255300, China. Electronic address:
Understanding the adsorption behavior of heavy oil components on reservoir solids is crucial for improving oil recovery, yet the molecular mechanism remains unclear. This study used molecular dynamics simulations to explore the adsorption kinetics and thermodynamics of asphaltene molecules on silica surfaces. The adsorption process was divided into three stages: free, adsorption, and equilibrium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!