The objective of this experiment was to develop a new computer-controlled simulated digestion system to predict the digestible energy (DE) and metabolizable energy (ME) of unconventional plant protein meals for growing pigs. Nine meals tested included 1 source of rapeseed meal, 4 sources of cottonseed meal, 2 sources of sunflower meal, and 2 sources of peanut meal. Twenty growing pigs (Duroc × [Landrace × Large White]) with an initial body weight (BW) of 41.7 ± 2.6 kg were allotted to a replicated 10 × 3 incomplete Latin square design to determine the DE and ME of 1 basal diet and 9 experimental diets formulated with 9 unconventional plant protein meals. The DE and ME values of unconventional plant protein meals were calculated by the difference method. The in vitro digestible energy (IVDE) of 1 basal diet, 9 experimental diets, and 9 unconventional plant protein meals were determined with 5 replicates of each sample in a complete randomized arrangement. The IVDE/DE or IVDE/ME ranged from 0.96 to 0.98 or 1.00 to 1.01, and the correlation coefficient between IVDE and DE or ME was 0.97 or 0.98 in 10 experimental diets. Accordingly, the IVDE/DE or IVDE/ME ranged from 0.86 to 1.05 or 0.96 to 1.20, and the correlation coefficient between IVDE and DE or ME was 0.92 or 0.91 in 9 unconventional plant protein meals. The coefficient of variation (CV) of IVDE was less than that of DE and ME in the experimental diets (0.43%, 0.80%, and 0.97% for CV of IVDE, DE and ME, respectively) and unconventional plant protein meals (0.92%, 4.84%, and 6.33% for CV of IVDE, DE and ME, respectively). The regression equations to predict DE from IVDE in 10 experimental diets and 9 unconventional plant protein meals were DE = 0.8851 × IVDE +539 (  = 0.9411, residual standard deviation [RSD] = 23 kcal/kg DM,  < 0.01) and DE = 0.9880 × IVDE + 166 (  = 0.8428, RSD = 182 kcal/kg DM,  < 0.01), respectively. There was no statistical difference in the slopes ( = 0.82) or intercepts ( = 1.00) of these 2 equations. Thus, 10 diets and 9 unconventional plant protein meals were pooled to establish the regression equation of DE on IVDE as: DE = 0.9813 × IVDE +187 (  = 0.9120, RSD = 118 kcal/kg DM,  < 0.01). The regression equations to predict ME from IVDE in 10 experimental diets and 9 unconventional plant protein meals were ME = 0.9559 × IVDE +146 (  = 0.9697, RSD = 18 kcal/kg DM,  < 0.01) and ME = 0.9388 × IVDE + 3 (  = 0.8282, RSD = 182 kcal/kg DM,  < 0.01), respectively. There was no statistical difference in slopes ( = 0.97) but significant difference between the intercepts ( = 0.02) of these 2 equations. Our results indicate IVDE has similar response to the DE but different response to the ME in 10 experimental diets and 9 unconventional plant protein meals. Therefore, IVDE is more suitable to predict DE than ME of diets and unconventional plant protein meals for growing pigs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207295PMC
http://dx.doi.org/10.1016/j.aninu.2022.02.004DOI Listing

Publication Analysis

Top Keywords

unconventional plant
32
plant protein
32
protein meals
32
experimental diets
20
growing pigs
12
meal sources
12
meals
9
computer-controlled simulated
8
simulated digestion
8
digestion system
8

Similar Publications

Quinoa is recognized for its nutritional and pharmacological properties. This study aims to investigate the impact of salt stress induced by varying concentrations of sodium chloride (NaCl) on the production of phenolic compounds and their biological activities in different quinoa accessions. Leaves from three quinoa accessions (Q4, Q24, and Q45) cultivated under increasing NaCl treatments were subjected to chemical analysis using ethanol and water extract.

View Article and Find Full Text PDF

Nutritional and Functional Characterization of Chia Expeller and Gluten-Free Flours as Ingredients for Premixes.

Plant Foods Hum Nutr

January 2025

UNCPBA, Facultad de Ingeniería, Departamento de Ingeniería Química y Tecnología de los Alimentos, TECSE, Olavarría, Buenos Aires, Argentina.

The growing consumer demand for healthier foods that help reduce the risk of chronic diseases has driven the food industry to innovate with nutritionally and technologically viable products. This trend and the nutritional gaps in gluten-free diets have spurred the exploration of unconventional, high-quality ingredients like flour from pseudocereals, legumes, and oilseeds. This study evaluated the nutritional and functional profiles of chia expeller and flours from buckwheat, green/yellow peas, and rice to study their potential as techno-functional ingredients for new gluten-free premixes.

View Article and Find Full Text PDF

Determination of main lipids and volatile compounds in unconventional cold-pressed seed oils through chromatographic techniques.

J Food Sci

January 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of Technology, University of Messina, Messina, Italy.

The purpose of this study was to characterize unconventional cold-pressed seed oils (rosehip, strawberry, blackcurrant, carrot, plum, pomegranate, radish, and raspberry) as novel alternative edible oil source. A chemical characterization of different lipid components (total fatty acid composition, triacylglycerols, and vitamin E) and volatiles responsible for the particular aroma of these oils was reported. All the oils showed a content of unsaturated fatty acids, mainly oleic, linoleic, and α-linolenic acid, that potentially contribute to the prevention of cardiovascular diseases, in the range of 80%-90%.

View Article and Find Full Text PDF

Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein.

Mol Plant Pathol

January 2025

Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.

View Article and Find Full Text PDF

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!