Atlantic salmon () fed a carbohydrate-rich diet exhibit suboptimal growth performance, along with other metabolic disturbances. It is well known that gut microbes play a pivotal role in influencing metabolism of the host, and these microbes can be modified by the diet. The main goal of the present study was to determine the effect of feeding graded levels of digestible carbohydrates to Atlantic salmon on the distal intestine digesta microbiota at 3 sampling times (i.e., weeks 4, 8 and 12), during a 12-week trial. A low carbohydrate-to-high protein diet (LC/HP, 0% wheat starch), a medium carbohydrate-to-medium protein diet (MC/MP, 15% wheat starch) or a high carbohydrate-to-low protein diet (HC/LP, 30% wheat starch) was fed to triplicate fish tanks (27 to 28 fish per tank). We performed an in-depth characterization of the distal intestine digesta microbiota. Further, growth parameters, liver histology and the expression of genes involved in hepatic neolipogenesis in fish were measured. Fish fed a HC/LP diet showed greater hepatosomatic and viscerosomatic indexes ( = 0.026 and = 0.018, respectively), lower final weight ( = 0.005), weight gain ( = 0.003), feed efficiency ( = 0.033) and growth rate ( = 0.003) compared with fish fed the LC/HP diet. Further, feeding salmon a high digestible carbohydrate diet caused greater lipid vacuolization, steatosis index ( = 0.007) and expression of fatty acid synthase () and delta-6 fatty acyl desaturase () ( = 0.001 and = 0.001, respectively) in the liver compared with fish fed the LC/HP diet. Although, the major impact of feeding a carbohydrate-rich diet to Atlantic salmon in beta diversity of distal intestine digesta microbiota was observed at week 4 (HC/LP vs MC/MP and HC/LP vs LC/HP; = 0.007 and = 0.008, respectively) and week 8 (HC/LP vs MC/MP; = 0.04), no differences between experimental groups were detected after 12 weeks of feeding. Finally, at the end of the trial, there was a negative correlation between lactic acid bacteria (LAB) members, including with hepatic steatosis level, the hepatosomatic and viscerosomatic indexes as well as the expression of and . showed negative correlation with hepatic steatosis level and the hepatosomatic index. Finally, further research to explore the potential use of LAB as probiotics to improve liver health in carnivorous fish fed fatty liver-induced diet is warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234083 | PMC |
http://dx.doi.org/10.1016/j.aninu.2022.04.003 | DOI Listing |
Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA).
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway.
Salmonid rickettsial septicemia (SRS) is a critical sanitary problem in the Chilean aquaculture industry since it induces the highest mortality rate in salmonids among all infectious diseases. , a facultative intracellular bacterium, is the biological agent of SRS. In Chile, two genogroups of , designated as LF-89 and EM-90, have been identified.
View Article and Find Full Text PDFPLoS Biol
January 2025
Institut de Génétique Humaine, Univ Montpellier, Centre National de la Recherche Scientifique, Montpellier, France.
In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters.
View Article and Find Full Text PDFFront Immunol
January 2025
Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.
Non-classical MHC class I genes which, compared to classical MHC class I, are typically less polymorphic and have more restricted expression patterns are attracting interest because of their potential to regulate immune responses to various pathogens. In salmonids, among the numerous non-classical MHC class I genes identified to date, L lineage genes, including Sasa- and , are differentially induced in response to microbial challenges. In the present study, we show that while transcription of both and are induced in response to SAV3 infection the transcriptional induction patterns are distinct for each gene.
View Article and Find Full Text PDFAquac Nutr
December 2024
Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), Bergen, Norway.
Two short-term feeding trials were conducted on , with the interaction between dietary zinc (Zn) and fat level in trial 1 and with the interaction between dietary Zn and n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in trial 2, focusing on postprandial plasma parameters, intestinal Zn and fat uptake and transport. After 4-week feeding interventions, samples were collected at different postprandial time points, ranging from 0 to 36/38 h after feeding. Results showed that increased Zn level in feed significantly increased the postprandial plasma Zn level in trial 1 (8-9°C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!