Background: Asthma is a chronic pulmonary disease that affects about 300 million people worldwide. Previous studies have associated antimicrobial use with allergies, but the real impact of antibiotics on asthma is still elusive. We investigated the potential impact of amoxicillin (Amox), trimethoprim/sulfamethoxazole (TMP/SMX), and metronidazole (Metro) in a murine model of OVA-induced allergic airway inflammation.

Methods: BALB/c mice received three cycles of 7 days of antibiotics in drinking water followed by 7 days washout and were sensitized i.p. with OVA/Alum at days 0 and 14. After the end of the last antibiotic washout, the mice were challenged with aerosolized OVA. Pulmonary parameters were evaluated, and serum, BAL, and feces were collected for analysis.

Results: Amox- and TMP/SMX-treated animals displayed more severe allergic airway inflammation parameters with increased airway hyperresponsiveness, reduced lung alveolar volume, and increased levels in BAL of IL-4 and IL-6. In contrast, Metro-treated mice showed preserved FEV-50, decreased lung inflammation, and higher levels of butyrate and propionate in their feces. Metro treatment was associated with increased OVA-specific IgA in serum. BAL microbiota was abundant in allergic groups but not in nonallergic controls with the Amox-treated group displaying the increased frequency of , while Metro and TMP/SMX showed increased levels of . In the gut, we observed the enrichment of associated with reduced airway inflammation phenotype in the Metro group, even after the recovery period.

Conclusion: Our data suggest that different antibiotic treatments may impact the course of experimental allergic airway inflammation in diverse ways by several mechanisms, including modulation of short-chain fat acids production by intestinal microbiota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9242750PMC
http://dx.doi.org/10.1155/2022/1466011DOI Listing

Publication Analysis

Top Keywords

allergic airway
16
airway inflammation
16
serum bal
8
increased levels
8
airway
6
allergic
5
inflammation
5
increased
5
treatment distinct
4
distinct antibiotic
4

Similar Publications

TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation.

Sci Immunol

January 2025

Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (T), which drive the immune response, and regulatory T cells (T), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on T versus T to balance type 2 immunity.

View Article and Find Full Text PDF

Recent studies have highlighted the critical role of lipid metabolism in macrophages concerning lung inflammation. However, it remains unclear whether lipid metabolism is involved in macrophage extracellular traps (METs). We analyzed the GSE40885 dataset from the GEO database using weighted correlation network analysis (WGCNA) and further selection using the least absolute shrinkage and selection operator (LASSO) regression.

View Article and Find Full Text PDF

Allergic airway inflammation is a universal airway disease induced by inhaling allergens. Published data show that RNF128, an E3 ligase, promotes Th2 activation in the OVA-induced asthma model. Recent advances have shown that group 2 innate lymphoid cells (ILC2s) produce the cytokines IL-5 and IL-13 to mediate type 2 immune response.

View Article and Find Full Text PDF

Laboratory mice are instrumental for preclinical research but there are serious concerns that the use of a clean standardized environment for specific-pathogen-free (SPF) mice results in poor bench-to-bedside translation due to their immature immune system. The aim of the present study was to test the importance of the gut microbiota in wild vs. SPF mice for evaluating host immune responses in a house-dust-mite-induced allergic airway inflammation model without the influence of pathogens.

View Article and Find Full Text PDF

: Airborne exogenous antigen inhalation can induce neutrophil infiltration of the airways, while eosinophils migrate to the airways in allergic airway inflammation. During a bacterial infection, Th2-associated cytokine IL-4, by binding to the IL-4 receptor (IL-4R), can suppress neutrophil recruitment to the site of inflammation. In the present study, we estimated whether the IL-4-dependent suppression of neutrophil recruitment contributed to the development of an immune response in asthma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!