Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wearable devices fall short in providing information other than physiological metrics despite athletes' demand for psychological feedback. To address this, we introduce a preliminary exploration to track psychological states of athletes based on commercial wearable devices, coach observations and machine learning. Our system collects Inertial Measuring Unit data from tennis players, while their coaches provide labels on their psychological states. A recurrent neural network is then trained to predict coach labels from sensor data. We test our approach by predicting being in the zone, a psychological state of optimal performance. We conduct two experimental games with two elite coaches and four professional players for evaluation. Our learned models achieve above 85% test accuracy, implying that our approach could be utilized to predict the zone at relatively low cost. Based on these findings, we discuss design implications and feasibility of this approach by contextualizing it in a real-life scenario.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247244 | PMC |
http://dx.doi.org/10.3389/fspor.2022.939641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!