Rigidity (or stiffness) of materials and extracellular matrix has proven to be one of the most significant extracellular physicochemical cues that can control diverse cell behaviors, such as contractility, motility, and spreading, and the resultant pathophysiological phenomena. Many 2D materials engineered with tunable rigidity have enabled researchers to elucidate the roles of matrix biophysical cues in diverse cellular events, including migration, lineage specification, and mechanical memory. Moreover, the recent findings accumulated under 3D environments with viscoelastic and remodeling properties pointed to the importance of dynamically changing rigidity in cell fate control, tissue repair, and disease progression. Thus, here we aim to highlight the works related with material/matrix-rigidity-mediated cell and tissue behaviors, with a brief outlook into the studies on the effects of material/matrix rigidity on cell behaviors in 2D systems, further discussion of the events and considerations in tissue-mimicking 3D conditions, and then examination of the findings that concern material/matrix rigidity. The current discussion will help understand the material/matrix-rigidity-mediated biological phenomena and further leverage the concepts to find therapeutic targets and to design implantable materials for the treatment of damaged and diseased tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234013 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2022.06.003 | DOI Listing |
J Biol Eng
January 2025
Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.
Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.
View Article and Find Full Text PDFACS Nano
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.
View Article and Find Full Text PDFNat Commun
January 2025
IGF, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Surgical Oncology, Tumor Hospital, The General Hospital of Ningxia Medical University, Ningxia, China. Electronic address:
Gastric cancer (GC) is one of the most common gastrointestinal cancers worldwide, with consistently high morbidity and mortality rates and poor prognosis. Most patients are diagnosed at an advanced stage due to the lack of specific presentation in the early stages. Exosomes are a class of extracellular vesicles (EVs) widely found in body fluids and can release genetic material or multiple proteins to facilitate intercellular communication.
View Article and Find Full Text PDFTissue Eng Part A
January 2025
C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.
Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!