Spatiotemporal analysis of induced neural stem cell therapy to overcome advanced glioblastoma recurrence.

Mol Ther Oncolytics

Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Published: September 2022

Genetically engineered neural stem cells (NSCs) are a promising therapy for the highly aggressive brain cancer glioblastoma (GBM); however, treatment durability remains a major challenge. We sought to define the events that contribute to dynamic adaptation of GBM during treatment with human skin-derived induced NSCs releasing the pro-apoptotic agent TRAIL (iNSC-TRAIL) and develop strategies that convert initial tumor kill into sustained GBM suppression. and analysis before, during, and after treatment revealed significant shifts in tumor transcriptome and spatial distribution as the tumors adapted to treatment. To address this, we designed iNSC delivery strategies that increased spatiotemporal TRAIL coverage and significantly decreased GBM volume throughout the brain, reducing tumor burden 100-fold as quantified in live brain slices. The varying impact of different strategies on treatment durability and median survival of both solid and invasive tumors provides important guidance for optimizing iNSC therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217992PMC
http://dx.doi.org/10.1016/j.omto.2022.06.004DOI Listing

Publication Analysis

Top Keywords

neural stem
8
gbm treatment
8
treatment durability
8
treatment
5
spatiotemporal analysis
4
analysis induced
4
induced neural
4
stem cell
4
cell therapy
4
therapy overcome
4

Similar Publications

Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells.

View Article and Find Full Text PDF

Spinal cord injury (SCI) remains a significant clinical challenge, with no fully effective treatment available despite advancements in various therapeutic approaches. This review examines the emerging role of induced neural stem cells (iNSCs) as promising candidates for SCI treatment, highlighting their potential for direct neural regeneration and integration with host tissue. We explore the biology of iNSCs, their mechanisms of action, and their interactions with host tissue, including modulating inflammatory responses, promoting axonal growth, and reconstructing neural circuits.

View Article and Find Full Text PDF

The advent of bioprinting has enabled the creation of precise three-dimensional (3D) cell cultures suitable for biomimetic in vitro models. In this study, we developed a novel protocol for 3D printing methacrylated collagen (ColMa, or PhotoCol®) combined with tendon stem/progenitor cells (hTSPCs) derived from human tendon explants. Although pure ColMa has not previously been proposed as a printable hydrogel, this paper outlines a robust and highly reproducible pipeline for bioprinting this material.

View Article and Find Full Text PDF

A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis Identification.

Clin Ophthalmol

January 2025

Center of Excellence for Cornea and Stem Cell Transplantation, Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

Purpose: To develop a comprehensively deep learning algorithm to differentiate between bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal corneas.

Methods: This retrospective study collected slit-lamp photos of patients with bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal cornea. Causative organisms of infectious keratitis were identified by either positive culture or clinical response to single treatment.

View Article and Find Full Text PDF

Ginsenoside Rg1 Promotes the Survival, Proliferation, and Differentiation of Senescent Neural Stem Cells Induced by D-galactose.

Actas Esp Psiquiatr

January 2025

Lab of Stem Cells and Tissue Engineering, Chongqing Medical University, 400016 Chongqing, China; Department of Histology and Embryology, Chongqing Medical University, 400016 Chongqing, China.

Background: Neural stem cells (NSCs) disrupt with aging, contributing to neurodegeneration. Ginsenoside Rg1 (Rg1), a compound found in Ginseng, is known for its anti-aging effects; however, its role in the progression of aging NSCs remains unclear. Therefore, this investigation explored the impact of Rg1 on the growth and maturation of aging NSC and elucidated its underlying molecular mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!