A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome-Wide Identification of Genes Related to Biosynthesis of Phenolic Acid Derivatives in at Different Suspension Culture Stages. | LitMetric

AI Article Synopsis

  • Researchers created a suspension culture system to study genes that regulate the production of phenolic acid derivatives, using high-performance liquid chromatography to measure their content over time.
  • They conducted transcriptome sequencing and correlation analysis to identify 80 differentially expressed genes (DEGs) linked to the biosynthesis of these compounds.
  • Results showed the peak production times for four specific phenolic acid derivatives and revealed which metabolic pathways and unigenes are involved in their synthesis, helping to better understand the biosynthesis mechanisms.

Article Abstract

To screen the genes regulating the biosynthesis of phenolic acid derivatives from the genome of , we designed a suspension culture system to sample the cells for the following experiments. The contents of four phenolic acid derivatives were determined by high-performance liquid chromatography, and several full-length transcriptome sequencings of RNA samples at 10 time points were performed for bioinformatics analysis. The correlation analysis was used to identify and verify the key DEGs involved in the biosynthesis of the four phenolic acid derivatives. The results showed that the contents of p-hydroxybenzylalcohol (HBA), Dactylorhin A, Militarine, and Coelonin peaked at 33 days postinoculation (Dpi), 18 Dpi, 39 Dpi, and 39 Dpi of the culture system, respectively. Based on transcriptome data, 80 DEGs involved in the biosynthesis of phenolic acid derivatives were obtained. The KEGG pathway enrichment analysis classified them mostly into five metabolic pathways: phenylpropane biosynthesis, starch and sucrose metabolic, cyanoamino acid metabolism, gluconeogenesis and glycolysis, and phenylalanine metabolism. qPCR analysis revealed that the relative gene expression levels were consistent with the overall trend of transcriptome sequencing results. Among them, 14, 18, 23, and 41 unigenes were found to be involved in the synthesis of HBA, Dactylorhin A, Coelonin, and Militarine, respectively. These unigenes laid a solid foundation for elucidating the biosynthesis mechanism of phenolic acid derivatives in suspension cells of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247868PMC
http://dx.doi.org/10.3389/fpls.2022.875404DOI Listing

Publication Analysis

Top Keywords

phenolic acid
24
acid derivatives
24
biosynthesis phenolic
16
dpi dpi
12
derivatives suspension
8
suspension culture
8
culture system
8
degs involved
8
involved biosynthesis
8
hba dactylorhin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!