A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Greenhouse Gas Fluxes of Mangrove Soils and Adjacent Coastal Waters in an Urban, Subtropical Estuary. | LitMetric

AI Article Synopsis

  • Mangroves sequester carbon at impressive rates, but understanding their carbon cycling requires measuring gas exchanges in nearby shallow waters.
  • Urbanization impacts these carbon fluxes, yet there’s limited data on how it affects greenhouse gas emissions in subtropical regions.
  • In San Juan Bay Estuary, urbanized mangrove areas showed lower salinity and higher methane emissions, highlighting the need to include adjacent waters in carbon assessments.

Article Abstract

Mangroves are known to sequester carbon at rates exceeding even those of other tropical forests; however, to understand carbon cycling in these systems, soil-atmosphere fluxes and gas exchanges in mangrove-adjacent shallow waters need to be quantified. Further, despite the ever-increasing impact of development on mangrove systems, there is even less data on how subtropical, greenhouse gas (GHG) fluxes are affected by urbanization. We quantified carbon dioxide (CO2) and methane (CH4) fluxes from mangrove soils and adjacent, coastal waters along a gradient of urbanization in the densely-populated, subtropical San Juan Bay Estuary (PR). Edaphic (salinity, pH, surface temperature) factors among sites significantly covaried with GHG fluxes. We found that mangrove systems in more highly-urbanized reaches of the estuary were characterized by relatively lower porewater salinities and substantially larger GHG emissions, particularly CH4, which has a high global warming potential. The magnitude of the CO2 emissions was similar in the mangrove soils and adjacent waters, but the CH4 emissions in the adjacent waters were an order of magnitude higher than in the soils and showed a marked response to urbanization. This study underscores the importance of considering GHG emissions of adjacent waters in carbon cycling dynamics in urbanized, tropical mangrove systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245748PMC
http://dx.doi.org/10.1007/s13157-020-01300-wDOI Listing

Publication Analysis

Top Keywords

fluxes mangrove
12
mangrove soils
12
soils adjacent
12
mangrove systems
12
adjacent waters
12
greenhouse gas
8
adjacent coastal
8
coastal waters
8
carbon cycling
8
ghg fluxes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!