Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables.

Lebensm Wiss Technol

Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.

Published: August 2022

Pandemic COVID-19 warned the importance of preparing the immune system to prevent diseases. Therefore, consuming fresh fruits and vegetables is essential for a healthy and balanced diet due to their diverse compositions of vitamins, minerals, fiber, and bioactive compounds. However, these fresh products grew close to manure and irrigation water and are harvested with equipment or by hand, representing a high risk of microbial, physical, and chemical contamination. The handling of fruits and vegetables exposed them to various wet surfaces of equipment and utensils, an ideal environment for biofilm formation and a potential risk for microbial contamination and foodborne illnesses. In this sense, this review presents an overview of the main problems associated with microbial contamination and the several chemicals, physical, and biological disinfection methods concerning their ability to avoid food contamination. This work has discussed using chemical products such as chlorine compounds, peroxyacetic acid, and quaternary ammonium compounds. Moreover, newer techniques including ozone, electrolyzed water, ultraviolet light, ultrasound, high hydrostatic pressure, cold plasma technology, and microbial surfactants have also been illustrated here. Finally, future trends in disinfection with a sustainable approach such as combined methods were also described. Therefore, the fruit and vegetable industries can be informed about their main microbial risks to establish optimal and efficient procedures to ensure food safety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239846PMC
http://dx.doi.org/10.1016/j.lwt.2022.113714DOI Listing

Publication Analysis

Top Keywords

microbial contamination
12
fruits vegetables
12
disinfection methods
8
risk microbial
8
microbial
6
contamination
5
conventional non-conventional
4
non-conventional disinfection
4
methods prevent
4
prevent microbial
4

Similar Publications

This study is aimed at evaluating the quality and safety of two traditional fermented dairy products commonly found in Lebanon (Ambarees and Kishk in its dry and wet forms) by detecting foodborne pathogens and indicator microorganisms. Additionally, it seeks to identify the strengths, weaknesses, opportunities, and threats to quality and the production level. A total of 58 random samples (duplicated) including goat milk ( = 16), dry Kishk ( = 8), wet Kishk ( = 8), and Ambarees ( = 26) were collected from individuals who both farm and process these products.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.

View Article and Find Full Text PDF

Background: Mobile phones used by healthcare workers (HCWs) in hospitals are significant reservoirs of drug-resistant bacteria responsible for hospital-acquired infections (HAIs).

Aim: The objective of this study was to assess the level of contamination with such bacteria in outpatient clinics.

Methods: Swabs from 83 HCWs' mobile phones were processed using standard biochemical and enzymatic procedures to identify pathogenic bacteria.

View Article and Find Full Text PDF

Quantitative Assessment of Microbial Transmission onto Environmental Surfaces Using Thermoresponsive Gelatin Hydrogels as a Finger Mimetic under In Situ-Mimicking Conditions.

Adv Healthc Mater

January 2025

Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.

Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.

View Article and Find Full Text PDF

Soil nitrogen deficiency aggravated the aging of biodegradable microplastics in paddy soil under the input of organic substances with contrasting C/N ratios.

J Hazard Mater

January 2025

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. Electronic address:

The application of organic substances to the agricultural field has effectively enhanced soil nutrient levels and crop yields. Biodegradable microplastics (bio-MPs), a pervasive emerging contaminant, may potentially impact the soil ecosystem through their aging process. Here, a 150-day dark incubation experiment was conducted to elucidate the disparities in the aging process of polylactic acid bio-MPs (PLA-MPs) in soils with contrasting C/N ratios of organic substances, as the mechanisms underlying this process remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!